The Potential of RNA Therapeutics in Treating Cardiovascular Disease

Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019;74(20):2529–32.

Article  PubMed  Google Scholar 

Roth GA, Mensah GA, Fuster V. The global burden of cardiovascular diseases and risks: a compass for global action. J Am Coll Cardiol. 2020;76(25):2980–1.

Article  CAS  PubMed  Google Scholar 

Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: a report of US and Global Data From the American Heart Association. Circulation. 2024;149(8):e347–913.

Article  PubMed  Google Scholar 

Xu M, Song J. Targeted therapy in cardiovascular disease: a precision therapy era. Front Pharmacol. 2021;12: 623674.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossello X, Pocock SJ, Julian DG. Long-term use of cardiovascular drugs: challenges for research and for patient care. J Am Coll Cardiol. 2015;66(11):1273–85.

Article  CAS  PubMed  Google Scholar 

Makhmudova U, Steinhagen-Thiessen E, Volpe M, et al. Advances in nucleic acid-targeted therapies for cardiovascular disease prevention. Cardiovasc Res. 2024;120(10):1107–25.

Article  CAS  PubMed  Google Scholar 

Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16(6):630–43.

Article  CAS  PubMed  Google Scholar 

Damase TR, Sukhovershin R, Boada C, et al. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021;9: 628137.

Article  PubMed  PubMed Central  Google Scholar 

Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.

CAS  PubMed  Google Scholar 

Kim YK. RNA therapy: rich history, various applications and unlimited future prospects. Exp Mol Med. 2022;54(4):455–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephenson ML, Zamecnik PC. Inhibition of Rous-Sarcoma viral-Rna translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA. 1978;75(1):285–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Y, Shi M, Wang Y, et al. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther. 2024;9(1):322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75.

Article  CAS  PubMed  Google Scholar 

Kariko K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40.

Article  CAS  PubMed  Google Scholar 

Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem. 2022;285: 106780.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3–17.

Article  CAS  PubMed  Google Scholar 

Wolff J. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949):1465–8.

Article  CAS  PubMed  Google Scholar 

Sahin U, Kariko K, Tureci O. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.

Article  CAS  PubMed  Google Scholar 

Park JE, Yi H, Kim Y, et al. Regulation of Poly(A) tail and translation during the somatic cell cycle. Mol Cell. 2016;62(3):462–71.

Article  CAS  PubMed  Google Scholar 

Ward NJ, Buckley SM, Waddington SN, et al. Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood. 2011;117(3):798–807.

Article  CAS  PubMed  Google Scholar 

Stepinski J, Waddell C, Stolarski R, et al. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA. 2001;7(10):1486–95.

CAS  PubMed  PubMed Central  Google Scholar 

Parr CJC, Wada S, Kotake K, et al. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res. 2020;48(6): e35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol. 2008;383(2):281–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudla G, Lipinski L, Caffin F, et al. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(6): e180.

Article  PubMed  PubMed Central  Google Scholar 

Wang YS, Kumari M, Chen GH, et al. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci. 2023;30(1):84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weng Y, Li C, Yang T, et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv. 2020;40: 107534.

Article  CAS  PubMed  Google Scholar 

Gan LM, Lagerstrom-Fermer M, Carlsson LG, et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat Commun. 2019;10(1):871.

Article  PubMed  PubMed Central  Google Scholar 

Anttila V, Saraste A, Knuuti J, et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol Ther. 2023;31(3):866–74.

Article  CAS  PubMed  Google Scholar 

Kilikevicius A, Meister G, Corey DR. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 2022;50(2):617–34.

Article  CAS  PubMed  Google Scholar 

O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.

Article  CAS  PubMed  Google Scholar 

Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073–84.

Article  CAS  PubMed  PubMed Central  Goog

Comments (0)

No login
gif