Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019;74(20):2529–32.
Roth GA, Mensah GA, Fuster V. The global burden of cardiovascular diseases and risks: a compass for global action. J Am Coll Cardiol. 2020;76(25):2980–1.
Article CAS PubMed Google Scholar
Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: a report of US and Global Data From the American Heart Association. Circulation. 2024;149(8):e347–913.
Xu M, Song J. Targeted therapy in cardiovascular disease: a precision therapy era. Front Pharmacol. 2021;12: 623674.
Article CAS PubMed PubMed Central Google Scholar
Rossello X, Pocock SJ, Julian DG. Long-term use of cardiovascular drugs: challenges for research and for patient care. J Am Coll Cardiol. 2015;66(11):1273–85.
Article CAS PubMed Google Scholar
Makhmudova U, Steinhagen-Thiessen E, Volpe M, et al. Advances in nucleic acid-targeted therapies for cardiovascular disease prevention. Cardiovasc Res. 2024;120(10):1107–25.
Article CAS PubMed Google Scholar
Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16(6):630–43.
Article CAS PubMed Google Scholar
Damase TR, Sukhovershin R, Boada C, et al. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021;9: 628137.
Article PubMed PubMed Central Google Scholar
Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.
Kim YK. RNA therapy: rich history, various applications and unlimited future prospects. Exp Mol Med. 2022;54(4):455–65.
Article CAS PubMed PubMed Central Google Scholar
Stephenson ML, Zamecnik PC. Inhibition of Rous-Sarcoma viral-Rna translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA. 1978;75(1):285–8.
Article CAS PubMed PubMed Central Google Scholar
Shi Y, Shi M, Wang Y, et al. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther. 2024;9(1):322.
Article CAS PubMed PubMed Central Google Scholar
Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75.
Article CAS PubMed Google Scholar
Kariko K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40.
Article CAS PubMed Google Scholar
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem. 2022;285: 106780.
Article CAS PubMed PubMed Central Google Scholar
Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3–17.
Article CAS PubMed Google Scholar
Wolff J. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949):1465–8.
Article CAS PubMed Google Scholar
Sahin U, Kariko K, Tureci O. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.
Article CAS PubMed Google Scholar
Park JE, Yi H, Kim Y, et al. Regulation of Poly(A) tail and translation during the somatic cell cycle. Mol Cell. 2016;62(3):462–71.
Article CAS PubMed Google Scholar
Ward NJ, Buckley SM, Waddington SN, et al. Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood. 2011;117(3):798–807.
Article CAS PubMed Google Scholar
Stepinski J, Waddell C, Stolarski R, et al. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA. 2001;7(10):1486–95.
CAS PubMed PubMed Central Google Scholar
Parr CJC, Wada S, Kotake K, et al. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res. 2020;48(6): e35.
Article CAS PubMed PubMed Central Google Scholar
Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol. 2008;383(2):281–91.
Article CAS PubMed PubMed Central Google Scholar
Kudla G, Lipinski L, Caffin F, et al. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(6): e180.
Article PubMed PubMed Central Google Scholar
Wang YS, Kumari M, Chen GH, et al. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci. 2023;30(1):84.
Article CAS PubMed PubMed Central Google Scholar
Weng Y, Li C, Yang T, et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv. 2020;40: 107534.
Article CAS PubMed Google Scholar
Gan LM, Lagerstrom-Fermer M, Carlsson LG, et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat Commun. 2019;10(1):871.
Article PubMed PubMed Central Google Scholar
Anttila V, Saraste A, Knuuti J, et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol Ther. 2023;31(3):866–74.
Article CAS PubMed Google Scholar
Kilikevicius A, Meister G, Corey DR. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 2022;50(2):617–34.
Article CAS PubMed Google Scholar
O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.
Article CAS PubMed Google Scholar
Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073–84.
Comments (0)