Exendin-4 improves cerebral ischemia by relaxing microvessels, rapidly increasing cerebral blood flow after reperfusion

Abdel-Latif RG, Heeba GH, Taye A, Khalifa MMA (2018) Lixisenatide ameliorates cerebral ischemia-reperfusion injury via GLP-1 receptor dependent/independent pathways. Eur J Pharmacol 833:145–154. https://doi.org/10.1016/j.ejphar.2018.05.045

Article  CAS  PubMed  Google Scholar 

Abdel-Latif RG, Heeba GH, Taye A, Khalifa MMA (2018) Lixisenatide, a novel GLP-1 analog, protects against cerebral ischemia/reperfusion injury in diabetic rats. N-S Arch Pharmacol 391:705–717. https://doi.org/10.1007/s00210-018-1497-1

Article  CAS  Google Scholar 

Augestad IL, Dekens D, Karampatsi D, Elabi O, Zabala A, Pintana H, Larsson M, Nystrom T, Paul G, Darsalia V, Patrone C (2022) Normalisation of glucose metabolism by exendin-4 in the chronic phase after stroke promotes functional recovery in male diabetic mice. Br J Pharmacol 179:677–694. https://doi.org/10.1111/bph.15524

Article  CAS  PubMed  Google Scholar 

Baron JC (2018) Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nat Rev Neurol 14:325–337. https://doi.org/10.1038/s41582-018-0002-2

Article  CAS  PubMed  Google Scholar 

Basalay MV, Mastitskaya S, Mrochek A, Ackland GL, Del Arroyo AG, Sanchez J, Sjoquist PO, Pernow J, Gourine AV, Gourine A (2016) Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc Res 112:669–676. https://doi.org/10.1093/cvr/cvw216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellastella G, Maiorino MI, Longo M, Scappaticcio L, Chiodini P, Esposito K, Giugliano D (2020) Glucagon-like peptide-1 receptor agonists and prevention of stroke systematic review of cardiovascular outcome trials with meta-analysis. Stroke 51:666–669. https://doi.org/10.1161/STROKEAHA.119.027557

Article  PubMed  Google Scholar 

Boulay AC, Saubamea B, Decleves X, Cohen-Salmon M (2015) Purification of mouse brain vessels. J Vis Exp. https://doi.org/10.3791/53208

Article  PubMed  PubMed Central  Google Scholar 

Cosmi F, Laini R, Nicolucci A (2017) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 376:890. https://doi.org/10.1056/NEJMc1615712

Article  PubMed  Google Scholar 

Dalkara T, Ostergaard L, Heusch G, Attwell D (2024) Pericytes in the brain and heart: functional roles and response to ischemia and reperfusion. Cardiovasc Res. https://doi.org/10.1093/cvr/cvae147

Article  PubMed  Google Scholar 

Davis MJ (2022) TRPM4 Inhibition: An Unexpected Mechanism of NO-Induced Vasodilatation. Function 3:zqac007. https://doi.org/10.1093/function/zqac007

Article  PubMed  PubMed Central  Google Scholar 

Drucker DJ, Holst JJ (2023) The expanding incretin universe: from basic biology to clinical translation. Diabetologia 66:1765–1779. https://doi.org/10.1007/s00125-023-05906-7

Article  CAS  PubMed  Google Scholar 

Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705. https://doi.org/10.1016/S0140-6736(06)69705-5

Article  CAS  PubMed  Google Scholar 

Giblett JP, Clarke SJ, Dutka DP, Hoole SP (2016) Glucagon-like peptide-1: a promising agent for cardioprotection during myocardial ischemia. JACC Basic Transl Sci 1:267–276. https://doi.org/10.1016/j.jacbts.2016.03.011

Article  PubMed  PubMed Central  Google Scholar 

Giugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, Ceriello A, Chiodini P, Esposito K (2021) GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol 20:189. https://doi.org/10.1186/s12933-021-01366-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60. https://doi.org/10.1038/nature13165

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hauck EF, Apostel S, Hoffmann JF, Heimann A, Kempski O (2004) Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. J Cereb Blood Flow Metab 24:383–391. https://doi.org/10.1097/00004647-200404000-00003

Article  PubMed  Google Scholar 

Hunter K, Holscher C (2012) Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 13:33. https://doi.org/10.1186/1471-2202-13-33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khatri P, Abruzzo T, Yeatts SD, Nichols C, Broderick JP, Tomsick TA, Ims I, Investigators II (2009) Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology 73:1066–1072. https://doi.org/10.1212/WNL.0b013e3181b9c847

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuroki T, Tanaka R, Shimada Y, Yamashiro K, Ueno Y, Shimura H, Urabe T, Hattori N (2016) Exendin-4 inhibits matrix metalloproteinase-9 activation and reduces infarct growth after focal cerebral ischemia in hyperglycemic mice. Stroke 47:1328–1335. https://doi.org/10.1161/STROKEAHA.116.012934

Article  CAS  PubMed  Google Scholar 

Long X, Yao X, Jiang Q, Yang Y, He X, Tian W, Zhao K, Zhang H (2020) Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 17:89. https://doi.org/10.1186/s12974-020-01761-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra A, O’Farrell FM, Reynell C, Hamilton NB, Hall CN, Attwell D (2014) Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc 9:323–336. https://doi.org/10.1038/nprot.2014.019

Article  CAS  PubMed  Google Scholar 

Muller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschop MH (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ (2017) Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 136:849–870. https://doi.org/10.1161/CIRCULATIONAHA.117.028136

Article  CAS  PubMed  Google Scholar 

Nizari S, Basalay M, Chapman P, Korte N, Korsak A, Christie IN, Theparambil SM, Davidson SM, Reimann F, Trapp S, Yellon DM, Gourine AV (2021) Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol 116:32. https://doi.org/10.1007/s00395-021-00873-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pearce L, Galan-Arriola C, Bell RM, Carr RD, Cunningham J, Davidson SM, Ghosh AK, Giesz S, Golforoush P, Gourine AV, Hermann DM, Heusch G, Ibanez B, Kalkhoran SB, Lecour S, Lukhna K, Ntsekhe M, Sack MN, Unwin RJ, Vilahur G, Walker JM, Yellon DM (2024) Inter-organ communication: pathways and targets to cardioprotection and neuro-protection. A report from the 12th Hatter Cardiovascular Institute workshop. Basic Res Cardiol. https://doi.org/10.1007/s00395-024-01094-6

Article  PubMed  Google Scholar 

Rousselet E, Kriz J, Seidah NG (2012) Mouse model of intraluminal MCAO: cerebral infarct evaluation by cresyl violet staining. J Vis Exp. https://doi.org/10.3791/4038

Article  PubMed  PubMed Central  Google Scholar 

Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, Dalboge LS, Hansen G, Grove KL, Pyke C, Raun K, Schaffer L, Tang-Christensen M, Verma S, Witgen BM, Vrang N, Bjerre K

Comments (0)

No login
gif