Abdel-Nasser ZM, Zaafan MA, Abdelhamid AM (2023) Modulation of the miR-122/Sirt-6/ACE2 axis on experimentally-induced myocardial infarction. Chem Biol Interact 369:110276. https://doi.org/10.1016/j.cbi.2022.110276
Article CAS PubMed Google Scholar
Ágg B, Baranyai T, Makkos A, Vető B, Faragó N, Zvara Á, Giricz Z, Veres DV, Csermely P, Arányi T, Puskás LG, Varga ZV, Ferdinandy P (2018) MicroRNA interactome analysis predicts post-transcriptional regulation of ADRB2 and PPP3R1 in the hypercholesterolemic myocardium. Sci Rep 8:10134. https://doi.org/10.1038/s41598-018-27740-3
Article CAS PubMed PubMed Central Google Scholar
Ágg B, Császár A, Szalay-Bekő M, Veres DV, Mizsei R, Ferdinandy P, Csermely P, Kovács IA (2019) The EntOptLayout cytoscape plug-in for the efficient visualization of major protein complexes in protein-protein interaction and signalling networks. Bioinformatics 35:4490–4492. https://doi.org/10.1093/bioinformatics/btz257
Article CAS PubMed PubMed Central Google Scholar
Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, Kurian L, Ocampo A, Vazquez-Ferrer E, Rodriguez-Esteban C, Kumar S, Moresco JJ, Yates JR 3rd, Campistol JM, Sancho-Martinez I, Giacca M, Izpisua Belmonte JC (2014) In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell 15:589–604. https://doi.org/10.1016/j.stem.2014.10.003
Article CAS PubMed PubMed Central Google Scholar
Aharon-Yariv A, Wang Y, Ahmed A, Delgado-Olguin P (2023) Integrated small RNA, mRNA and protein omics reveal a miRNA network orchestrating metabolic maturation of the developing human heart. BMC Genomics 24:709. https://doi.org/10.1186/s12864-023-09801-8
Article CAS PubMed PubMed Central Google Scholar
Ahmed FW, Bakhashab S, Bastaman IT, Crossland RE, Glanville M, Weaver JU (2018) Anti-angiogenic miR-222, miR-195, and miR-21a plasma levels in T1DM are improved by metformin therapy, thus elucidating its cardioprotective effect: the MERIT Study. Int J Mol Sci 19:3242. https://doi.org/10.3390/ijms19103242
Article CAS PubMed PubMed Central Google Scholar
Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, Hart M, Abu-Halima M, Grässer FA, Lenhof HP, Keller A, Meese E (2019) An estimate of the total number of true human miRNAs. Nucleic Acids Res 47:3353–3364. https://doi.org/10.1093/nar/gkz097
Article CAS PubMed PubMed Central Google Scholar
Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279. https://doi.org/10.1261/rna.2183803
Article CAS PubMed PubMed Central Google Scholar
Ao J, Zhang X, Zhu D (2024) Sevoflurane affects myocardial autophagy levels after myocardial ischemia reperfusion injury via the microRNA-542-3p/ADAM9 axis. Cardiovasc Toxicol 24:1226–1235. https://doi.org/10.1007/s12012-024-09908-8
Article CAS PubMed Google Scholar
Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A, Ahmed RPH (2017) MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med (Berl) 95:1369–1385. https://doi.org/10.1007/s00109-017-1591-8
Article CAS PubMed Google Scholar
Baars T, Skyschally A, Klein-Hitpass L, Cario E, Erbel R, Heusch G, Kleinbongard P (2014) microRNA expression and its potential role in cardioprotection by ischemic postconditioning in pigs. Pflugers Arch 466:1953–1961. https://doi.org/10.1007/s00424-013-1429-3
Article CAS PubMed Google Scholar
Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541. https://doi.org/10.1093/cvr/cvu167
Article CAS PubMed Google Scholar
Bartekova M, Jelemensky M, Dhalla NS (2019) Emerging role of non-coding RNAs and extracellular vesicles in cardioprotection by remote ischemic conditioning of the heart. Rev Cardiovasc Med 20:59–71. https://doi.org/10.31083/j.rcm.2019.02.54
Bartman CM, Oyama Y, Brodsky K, Khailova L, Walker L, Koeppen M, Eckle T (2017) Intense light-elicited upregulation of miR-21 facilitates glycolysis and cardioprotection through Per2-dependent mechanisms. PLoS ONE 12:e0176243. https://doi.org/10.1371/journal.pone.0176243
Article CAS PubMed PubMed Central Google Scholar
Bayés-Genis A, Lanfear DE, de Ronde MWJ, Lupón J, Leenders JJ, Liu Z, Zuithoff NPA, Eijkemans MJC, Zamora E, De Antonio M, Zwinderman AH, Pinto-Sietsma SJ, Pinto YM (2018) Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients. Eur J Heart Fail 20:67–75. https://doi.org/10.1002/ejhf.984
Article CAS PubMed Google Scholar
Bayoumi AS, Teoh JP, Aonuma T, Yuan Z, Ruan X, Tang Y, Su H, Weintraub NL, Kim IM (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 113:1603–1614. https://doi.org/10.1093/cvr/cvx132
Article CAS PubMed PubMed Central Google Scholar
Bei Y, Lu D, Bär C, Chatterjee S, Costa A, Riedel I, Mooren FC, Zhu Y, Huang Z, Wei M, Hu M, Liu S, Yu P, Wang K, Thum T, Xiao J (2022) miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection. Mol Ther 30:1675–1691. https://doi.org/10.1016/j.ymthe.2022.01.031
Article CAS PubMed PubMed Central Google Scholar
Bei Y, Wang H, Liu Y, Su Z, Li X, Zhu Y, Zhang Z, Yin M, Chen C, Li L, Wei M, Meng X, Liang X, Huang Z, Cao RY, Wang L, Li G, Cretoiu D, Xiao J (2024) Exercise-induced miR-210 promotes cardiomyocyte proliferation and survival and mediates exercise-induced cardiac protection against ischemia/reperfusion injury. Research (Wash D C) 7:0327. https://doi.org/10.34133/research.0327
Article CAS PubMed Google Scholar
Bencsik P, Kiss K, Ágg B, Baán JA, Ágoston G, Varga A, Gömöri K, Mendler L, Faragó N, Zvara Á, Sántha P, Puskás LG, Jancsó G, Ferdinandy P (2019) Sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs. Int J Mol Sci 20:991. https://doi.org/10.3390/ijms20040991
Article CAS PubMed PubMed Central Google Scholar
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B (2025) Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 182:340–379. https://doi.org/10.1111/bph.17302
Article CAS PubMed Google Scholar
Bian B, Yu XF, Wang GQ, Teng TM (2017) Role of miRNA-1 in regulating connexin 43 in ischemia-reperfusion heart injury: a rat model. Cardiovasc Pathol 27:37–42. https://doi.org/10.1016/j.carpath.2016.12.006
Article CAS PubMed Google Scholar
Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544:1–122. https://doi.org/10.1016/j.physrep.2014.07.001
Article CAS PubMed PubMed Central Google Scholar
Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713. https://doi.org/10.1126/science.1174381
Article CAS PubMed Google Scholar
Borden A, Kurian J, Nickoloff E, Yang Y, Troupes CD, Ibetti J, Lucchese AM, Gao E, Mohsin S, Koch WJ, Houser SR, Kishore R, Khan M (2019) Transient introduction of miR-294 in the heart promotes cardiomyocyte cell cycle reentry after injury. Circ Res 125:14–25. https://doi.org/10.1161/CIRCRESAHA.118.314223
Comments (0)