Anderson JL, Baim DS, Fein SA, Goldstein RA, LeJemtel TH, Likoff MJ (1987) Efficacy and safety of sustained (48 hour) intravenous infusions of milrinone in patients with severe congestive heart failure: a multicenter study. J Am Coll Cardiol 9:711–722. https://doi.org/10.1016/S0735-1097(87)80223-1
Article CAS PubMed Google Scholar
Annoni F, Su F, Peluso L, Lisi I, Caruso E, Pischiutta F, Gouvea Bogossian E, Garcia B, Njimi H, Vincent J-L, Gaspard N, Ferlini L, Creteur J, Zanier ER, Taccone FS (2024) Infusion of sodium DL-3-ß-hydroxybutyrate decreases cerebral injury biomarkers after resuscitation in experimental cardiac arrest. Crit Care 28:314. https://doi.org/10.1186/s13054-024-05106-8
Article PubMed PubMed Central Google Scholar
Antonopoulos AS, Goliopoulou A, Vogiatzi G, Tousoulis D (2018) Myocardial oxygen consumption. Coronary artery disease. Elsevier, Amsterdam, pp 127–136
Berg-Hansen K, Gopalasingam N, Christensen KH, Ladefoged B, Andersen MJ, Poulsen SH, Borlaug BA, Nielsen R, Møller N, Wiggers H (2024) Cardiovascular Effects of Oral Ketone Ester Treatment in Patients With Heart Failure With Reduced Ejection Fraction: A Randomized, Controlled, Double-Blind Trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.123.067971
Berg-Hansen K, Christensen KH, Gopalasingam N, Nielsen R, Eiskjær H, Møller N, Birkelund T, Christensen S, Wiggers H (2023) Beneficial effects of ketone ester in patients with cardiogenic shock: a randomized, controlled, double-blind trial. JACC Heart Fail 11:1337–1347. https://doi.org/10.1016/j.jchf.2023.05.029
Article CAS PubMed Google Scholar
Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochemical Journal 435:297–312. https://doi.org/10.1042/BJ20110162
Article CAS PubMed Google Scholar
Byrne NJ, Soni S, Takahara S, Ferdaoussi M, Al Batran R, Darwesh AM, Levasseur JL, Beker D, Vos DY, Schmidt MA, Alam AS, Maayah ZH, Schertzer JD, Seubert JM, Ussher JR, Dyck JRB (2020) Chronically Elevating Circulating Ketones Can Reduce Cardiac Inflammation and Blunt the Development of Heart Failure. Circ Heart Fail 13. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006573
Chirinos JA, Rietzschel ER, Shiva-Kumar P, De Buyzere ML, Zamani P, Claessens T, Geraci S, Konda P, De Bacquer D, Akers SR, Gillebert TC, Segers P (2014) Effective Arterial Elastance Is Insensitive to Pulsatile Arterial Load. Hypertension 64:1022–1031. https://doi.org/10.1161/HYPERTENSIONAHA.114.03696
Article CAS PubMed Google Scholar
Chu Y, Hua Y, He L, He J, Chen Y, Yang J, Mahmoud I, Zeng F, Zeng X, Benavides GA, Darley-Usmar VM, Young ME, Ballinger SW, Prabhu SD, Zhang C, Xie M (2024) β-hydroxybutyrate administered at reperfusion reduces infarct size and preserves cardiac function by improving mitochondrial function through autophagy in male mice. J Mol Cell Cardiol 186:31–44. https://doi.org/10.1016/j.yjmcc.2023.11.001
Article CAS PubMed Google Scholar
Curran J, Burkhoff D, Kloner RA (2019) Beyond Reperfusion: Acute Ventricular Unloading and Cardioprotection During Myocardial Infarction. J Cardiovasc Transl Res 12:95–106. https://doi.org/10.1007/s12265-019-9863-z
Article PubMed PubMed Central Google Scholar
Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E (2018) High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. pp 31–70
Eichhorn EJ, Konstam MA, Weiland DS, Roberts DJ, Martin TT, Stransky NB, Salem DN (1987) Differential effects of milrinone and dobutamine on right ventricular preload, afterload and systolic performance in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 60:1329–1333. https://doi.org/10.1016/0002-9149(87)90616-3
Article CAS PubMed Google Scholar
Eickelmann C, Lieder HR, Shehada S-E, Thielmann M, Heusch G, Kleinbongard P (2023) Mitochondrial respiration analysis in permeabilized porcine left ventricular and human right atrial specimens with ischemia-reperfusion. American Journal of Physiology-Heart and Circulatory Physiology 325:H125–H135. https://doi.org/10.1152/ajpheart.00172.2023
Article CAS PubMed Google Scholar
Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, LeJemtel TH, Cotter G, Investigators SHOCK (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 44:340–348. https://doi.org/10.1016/j.jacc.2004.03.060
Francis GS, Sharma B, Hodges M (1982) Comparative hemodynamic effects of dopamine and dobutamine in patients with acute cardiogenic circulatory collapse. Am Heart J 103:995–1000. https://doi.org/10.1016/0002-8703(82)90562-2
Article CAS PubMed Google Scholar
Frey S, Geffroy G, Desquiret-Dumas V, Gueguen N, Bris C, Belal S, Amati-Bonneau P, Chevrollier A, Barth M, Henrion D, Lenaers G, Bonneau D, Reynier P, Procaccio V (2017) The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model. Biochim Biophys Acta (BBA) Mol Basis Dis 1863:284–291. https://doi.org/10.1016/j.bbadis.2016.10.028
Gambardella J, Jankauskas SS, Kansakar U, Varzideh F, Avvisato R, Prevete N, Sidoli S, Mone P, Wang X, Lombardi A, Santulli G (2023) Ketone bodies rescue mitochondrial dysfunction via epigenetic remodeling. JACC Basic Transl Sci 8:1123–1137. https://doi.org/10.1016/j.jacbts.2023.03.014
Article PubMed PubMed Central Google Scholar
Genserová L, Duška F, Krajčová A (2024) β-hydroxybutyrate exposure restores mitochondrial function in skeletal muscle satellite cells of critically ill patients. Clin Nutr 43:1250–1260. https://doi.org/10.1016/j.clnu.2024.04.009
Article CAS PubMed Google Scholar
Gopalasingam N, Christensen KH, Berg Hansen K, Nielsen R, Johannsen M, Gormsen LC, Boedtkjer E, Nørregaard R, Møller N, Wiggers H (2023) Stimulation of the hydroxycarboxylic acid receptor 2 with the ketone body 3-hydroxybutyrate and niacin in patients with chronic heart failure: hemodynamic and metabolic effects. J Am Heart Assoc 12:e029849. https://doi.org/10.1161/JAHA.123.029849
Article PubMed PubMed Central Google Scholar
Gopalasingam N, Moeslund N, Christensen KH, Berg-Hansen K, Seefeldt J, Homilius C, Nielsen EN, Dollerup MR, Alstrup Olsen AK, Johannsen M, Boedtkjer E, Møller N, Eiskjær H, Gormsen LC, Nielsen R, Wiggers H (2024) Enantiomer-specific cardiovascular effects of the ketone body 3-hydroxybutyrate. J Am Heart Assoc. https://doi.org/10.1161/JAHA.123.033628
Article PubMed PubMed Central Google Scholar
Gopalasingam N, Berg-Hansen K, Christensen KH, Ladefoged BT, Poulsen SH, Andersen MJ, Borlaug B, Nielsen R, Møller N, Wiggers H (2024) Randomized crossover trial of 2-week ketone ester treatment in patients with Type 2 diabetes and heart failure with preserved ejection fraction. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.124.069732
Article PubMed PubMed Central Google Scholar
Han Y, Bedarida T, Ding Y, Somba BK, Lu Q, Wang Q, Song P, Zou M-H (2018) β-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol Cell 71:1064-1078.e5. https://doi.org/10.1016/j.molcel.2018.07.036
Article CAS PubMed PubMed Central Google Scholar
Harjola V-P, Lassus J, Sionis A, Køber L, Tarvasmäki T, Spinar J, Parissis J, Banaszewski M, Silva-Cardoso J, Carubelli V, Di Somma S, Tolppanen H, Zeymer U, Thiele H, Nieminen MS, Mebazaa A, CardShock Study Investigators, GREAT network (2015) Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail 17:501–509. https://doi.org/10.1002/ejhf.260
Hevrøy O, Reikerås O, Grundnes O, Mjøs OD (1988) Cardiovascular effects of positive end-expiratory pressure during acute left ventricular failure in dogs. Clin Physiol 8:287–301. https://doi.org/10.1111/j.1475-097x.1988.tb00271.x
Homilius C, Seefeldt JM, Axelsen JS, Pedersen TM, Sørensen TM, Nielsen R, Wiggers H, Hansen J, Matchkov VV, Bøtker HE, Boedtkjer E (2023) Ketone body 3-hydroxybutyrate elevates cardiac output through peripheral vasorelaxation and enhanced cardiac contractility. Basic Res Cardiol 118:37. https://doi.org/10.1007/s00395-023-01008-y
Article CAS PubMed PubMed Central Google Scholar
Hørsdal OK (2025) Can utilization of the venous-to-arterial carbon dioxide difference improve patient outcomes in cardiogenic shock? A narrative review. Am Heart J Plus Cardiol Res Pract 50:100504. https://doi.org/10.1016/j.ahjo.2025.100504
Hørsdal OK, Moeslund N, Berg-Hansen K, Nielsen R, Møller N, Eiskjær H, Wiggers H, Gopalasingam N (2024) Lactate infusion elevates cardiac output through increased heart rate and decreased vascular resistance: a randomised, blinded, crossover trial in a healthy porcine model. J Transl Med 22:285. https://doi.org/10.1186/s12967-024-05064-3
Article CAS PubMed PubMed Central Google Scholar
Hørsdal OK, Wethelund KL, Gopalasingam N, Lyhne MD, Ellegaard MS, Møller-Helgestad OK, Ravn HB, Wiggers H, Christensen S, Berg-Hansen K (2024) Cardiovascular effects of increasing positive end-expiratory pressure in a model of left ventricular cardiogenic shock in female pigs. Anesthesiology. https://doi.org/10.1097/ALN.0000000000005201
H
Comments (0)