Ahern CA, Zhang JF, Wookalis MJ, Horn R (2005) Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase. Circ Res 96:991–998. https://doi.org/10.1161/01.RES.0000166324.00524.dd
Article CAS PubMed Google Scholar
Bao L, Kefaloyianni E, Lader J, Hong M, Morley G, Fishman GI, Sobie EA, Coetzee WA (2011) Unique properties of the ATP-sensitive K+ channel in the mouse ventricular cardiac conduction system. Circ Arrhythm Electrophysiol 4:926–935. https://doi.org/10.1161/circep.111.964643
Article CAS PubMed PubMed Central Google Scholar
Béguin P, Nagashima K, Nishimura M, Gonoi T, Seino S (1999) PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. Embo J 18:4722–4732. https://doi.org/10.1093/emboj/18.17.4722
Article PubMed PubMed Central Google Scholar
Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14:863–880. https://doi.org/10.1089/ars.2010.3309
Article CAS PubMed Google Scholar
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8
Article CAS PubMed PubMed Central Google Scholar
Cartier EA, Conti LR, Vandenberg CA, Shyng SL (2001) Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci U S A 98:2882–2887. https://doi.org/10.1073/pnas.051499698
Article CAS PubMed PubMed Central Google Scholar
Chen P, Li F, Xu Z, Li Z, Yi XP (2013) Expression and distribution of Src in the nucleus of myocytes in cardiac hypertrophy. Int J Mol Med 32:165–173. https://doi.org/10.3892/ijmm.2013.1382
Article CAS PubMed Google Scholar
Chutkow WA, Makielski JC, Nelson DJ, Burant CF, Fan Z (1999) Alternative splicing of sur2 Exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channel. J Biol Chem 274:13656–13665. https://doi.org/10.1074/jbc.274.19.13656
Article CAS PubMed Google Scholar
ClementKunjilwarGonzalezSchwanstecherPantenAguilar-BryanBryan JPKGMULJ (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838. https://doi.org/10.1016/s0896-6273(00)80321-9
Coulis G, Londhe AD, Sagabala RS, Shi Y, Labbé DP, Bergeron A, Sahadevan P, Nawaito SA, Sahmi F, Josse M, Vinette V, Guertin MC, Karsenty G, Tremblay ML, Tardif JC, Allen BG, Boivin B (2022) Protein tyrosine phosphatase 1B regulates miR-208b-argonaute 2 association and thyroid hormone responsiveness in cardiac hypertrophy. Sci Signal 15:eabn6875. https://doi.org/10.1126/scisignal.abn6875
Article CAS PubMed PubMed Central Google Scholar
Delibegovic M, Bence KK, Mody N, Hong EG, Ko HJ, Kim JK, Kahn BB, Neel BG (2007) Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol 27:7727–7734. https://doi.org/10.1128/mcb.00959-07
Article CAS PubMed PubMed Central Google Scholar
Dong MQ, Sun HY, Tang Q, Tse HF, Lau CP, Li GR (2010) Regulation of human cardiac KCNQ1/KCNE1 channel by epidermal growth factor receptor kinase. Biochim Biophys Acta 1798:995–1001. https://doi.org/10.1016/j.bbamem.2010.01.010
Article CAS PubMed Google Scholar
Driggers CM, Shyng SL (2021) Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy. Methods Enzymol 653:121–150. https://doi.org/10.1016/bs.mie.2021.02.008
Article CAS PubMed PubMed Central Google Scholar
Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548. https://doi.org/10.1126/science.283.5407.1544
Article CAS PubMed Google Scholar
Farid TA, Nair K, Massé S, Azam MA, Maguy A, Lai PF, Umapathy K, Dorian P, Chauhan V, Varró A, Al-Hesayen A, Waxman M, Nattel S, Nanthakumar K (2011) Role of KATP channels in the maintenance of ventricular fibrillation in cardiomyopathic human hearts. Circ Res 109:1309–1318. https://doi.org/10.1161/circresaha.110.232918
Article CAS PubMed Google Scholar
Feng M, Xiang JZ, Ming ZY, Fu Q, Ma R, Zhang QF, Dun YY, Yang L, Liu H (2012) Activation of epidermal growth factor receptor mediates reperfusion arrhythmias in anaesthetized rats. Cardiovasc Res 93:60–68. https://doi.org/10.1093/cvr/cvr281
Article CAS PubMed Google Scholar
Ferdinandy P, Szilvássy Z, Droy-Lefaix MT, Tarrade T, Koltai M (1995) KATP channel modulation in working rat hearts with coronary occlusion: effects of cromakalim, cicletanine, and glibenclamide. Cardiovasc Res 30:781–787
Article CAS PubMed Google Scholar
Foster MN, Coetzee WA (2016) KATP channels in the cardiovascular system. Physiol Rev 96:177–252. https://doi.org/10.1152/physrev.00003.2015
Article CAS PubMed Google Scholar
Gando I, Becerra Flores M, Chen IS, Yang HQ, Nakamura TY, Cardozo TJ, Coetzee WA (2023) CL-705G: a novel chemical Kir6.2-specific K(ATP) channel opener. Front Pharmacol 14:1197257. https://doi.org/10.3389/fphar.2023.1197257
Article CAS PubMed PubMed Central Google Scholar
Garg V, Jiao J, Hu K (2009) Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes. Cardiovasc Res 82:51–58. https://doi.org/10.1093/cvr/cvp039
Article CAS PubMed Google Scholar
Harvey J, Ashford ML (1998) Role of tyrosine phosphorylation in leptin activation of ATP-sensitive K+ channels in the rat insulinoma cell line CRI-G1. J Physiol 510(Pt 1):47–61. https://doi.org/10.1111/j.1469-7793.1998.047bz.x
Article CAS PubMed PubMed Central Google Scholar
Hernandez-Resendiz S, Vilskersts R, Aluja D, Andreadou I, Bencsik P, Dambrova M, Efentakis P, Gao F, Giricz Z, Inserte J, Kelly-Laubscher R, Kiss A, Krieg T, Kwak BR, Lecour S, Lopaschuk G, Mączewski M, Waszkiewicz M, Oknińska M, Pagliaro P, Podesser B, Prag HA, Ruiz-Meana M, Szabados T, Zuurbier CJ, Ferdinandy P, Hausenloy DJ (2025) IMproving preclinical assessment of cardioprotective therapies (IMPACT): a small animal acute myocardial infarction randomized-controlled multicenter study on the effect of ischemic preconditioning. Basic Res Cardiol. https://doi.org/10.1007/s00395-025-01102-3
Article PubMed PubMed Central Google Scholar
Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y
Heusch G (2024) Myocardial ischemia/reperfusion: translational pathophysiology of ischemic heart disease. Med 5:10–31. https://doi.org/10.1016/j.medj.2023.12.007
Article CAS PubMed Google Scholar
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F (2023) Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 67:102894. https://doi.org/10.1016/j.redox.2023.102894
Article CAS PubMed PubMed Central Google Scholar
Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919.
Comments (0)