Red Blood Cell Distribution Width May Predict Drug-Induced Anemia and Prognosis in Patients Affected by Primary/Secondary Myelofibrosis Treated with Ruxolitinib

Passamonti F, Mora B. Myelofibrosis. Blood. 2023;141(16):1954–70.

Article  CAS  PubMed  Google Scholar 

Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.

Article  PubMed  PubMed Central  Google Scholar 

Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Titmarsh GJ, Duncombe AS, McMullin MF, et al. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol. 2014;89(6):581–7.

Article  PubMed  Google Scholar 

Rampal R, Al-Shahrour F, Abdel-Wahab O, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123–33.

Article  PubMed  PubMed Central  Google Scholar 

Coltro G, Vannucchi AM. The safety of JAK kinase inhibitors for the treatment of myelofibrosis. Expert Opin Drug Saf. 2021;20(2):139–54.

Article  CAS  PubMed  Google Scholar 

Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verstovsek S, Mesa RA, Gotlib J, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibrosis. Br J Haematol. 2013;161(4):508–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55.

Article  PubMed  PubMed Central  Google Scholar 

Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016;101(9):1065–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guglielmelli P, Biamonte F, Rotunno G, et al. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood. 2014;123(14):2157–60.

Article  CAS  PubMed  Google Scholar 

Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali H, Bacigalupo A. 2021 update on allogeneic hematopoietic stemcell transplant for myelofibrosis: a review of current data and applications on risk stratification and management. Am J Hematol. 2021;96:1532–8.

Article  PubMed  PubMed Central  Google Scholar 

Pemmaraju N, Bose P, Rampal R, et al. Ten years after ruxolitinib approval for myelofibrosis: a review of clinical efficacy. Leuk Lymphoma. 2023;64(6):1063–81.

Article  CAS  PubMed  Google Scholar 

Naymagon L, Mascarenhas J. Myelofibrosis-related anemia: current and emerging therapeutic strategies. Hemasphere. 2017;1(1):e1 (Published 2017 Dec 20).

Article  PubMed  PubMed Central  Google Scholar 

Tefferi A, Lasho TL, Jimma T, et al. One thousand patients with primary myelofibrosis: the Mayo Clinic experience. Mayo Clin Proc. 2012;87:25–33.

Article  PubMed  PubMed Central  Google Scholar 

Cervantes F, Pereira A. Prognostication in primary myelofibrosis. Curr Hematol Malig Rep. 2012;7:43–9.

Article  PubMed  Google Scholar 

Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901.

Article  CAS  PubMed  Google Scholar 

Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8.

Article  CAS  PubMed  Google Scholar 

Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7.

Article  PubMed  Google Scholar 

Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017;31(12):2726–31.

Article  CAS  PubMed  Google Scholar 

Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: mutation-enhanced International Prognostic Score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36(4):310–8.

Article  CAS  PubMed  Google Scholar 

Passamonti F, Harrison CN, Mesa RA, et al. Anemia in myelofibrosis: current and emerging treatment options. Crit Rev Oncol Hematol. 2022;180: 103862.

Article  PubMed  Google Scholar 

Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(5):801–21.

Article  CAS  PubMed  Google Scholar 

Fisher DAC, Fowles JS, Zhou A, et al. Inflammatory pathophysiology as a contributor to myeloproliferative neoplasms. Front Immunol. 2021;12:683401 (Published 2021 Jun 1).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sollazzo D, Forte D, Polverelli N, et al. Crucial factors of the inflammatory microenvironment (IL-1β/TNF-α/TIMP-1) promote the maintenance of the malignant hemopoietic clone of myelofibrosis: an in vitro study. Oncotarget. 2016;7(28):43974–88.

Article  PubMed  PubMed Central  Google Scholar 

Simel DL, DeLong ER, Feussner JR, et al. Erythrocyte anisocytosis. Visual inspection of blood films vs automated analysis of red blood cell distribution width. Arch Intern Med. 1988;148(4):822–4.

Article  CAS  PubMed  Google Scholar 

de Gonzalo-Calvo D, de Luxán-Delgado B, Rodríguez-González S, et al. Interleukin 6, soluble tumor necrosis factor receptor I and red blood cell distribution width as biological markers of functional dependence in an elderly population: a translational approach. Cytokine. 2012;58(2):193–8.

Article  PubMed  Google Scholar 

Lippi G, Targher G, Montagnana M, et al. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients [published correction appears in Arch Pathol Lab Med. 2009 Aug; 133(8):1186]. Arch Pathol Lab Med. 2009;133(4):628–32.

Article  CAS  PubMed  Google Scholar 

Tonelli M, Sacks F, Arnold M, et al. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008;117:163–8.

Article  PubMed  Google Scholar 

Ellingsen TS, Lappegard J, Skjelbakken T, et al. Red cell distribution width is associated with incident venous thromboembolism (VTE) and case-fatality after VTE in a general population. Thromb Haemostasis. 2015;113:193–200.

Comments (0)

No login
gif