Passamonti F, Mora B. Myelofibrosis. Blood. 2023;141(16):1954–70.
Article CAS PubMed Google Scholar
Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.
Article PubMed PubMed Central Google Scholar
Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–28.
Article CAS PubMed PubMed Central Google Scholar
Titmarsh GJ, Duncombe AS, McMullin MF, et al. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol. 2014;89(6):581–7.
Rampal R, Al-Shahrour F, Abdel-Wahab O, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123–33.
Article PubMed PubMed Central Google Scholar
Coltro G, Vannucchi AM. The safety of JAK kinase inhibitors for the treatment of myelofibrosis. Expert Opin Drug Saf. 2021;20(2):139–54.
Article CAS PubMed Google Scholar
Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807.
Article CAS PubMed PubMed Central Google Scholar
Verstovsek S, Mesa RA, Gotlib J, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibrosis. Br J Haematol. 2013;161(4):508–16.
Article CAS PubMed PubMed Central Google Scholar
Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55.
Article PubMed PubMed Central Google Scholar
Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016;101(9):1065–73.
Article CAS PubMed PubMed Central Google Scholar
Guglielmelli P, Biamonte F, Rotunno G, et al. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood. 2014;123(14):2157–60.
Article CAS PubMed Google Scholar
Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7.
Article CAS PubMed PubMed Central Google Scholar
Ali H, Bacigalupo A. 2021 update on allogeneic hematopoietic stemcell transplant for myelofibrosis: a review of current data and applications on risk stratification and management. Am J Hematol. 2021;96:1532–8.
Article PubMed PubMed Central Google Scholar
Pemmaraju N, Bose P, Rampal R, et al. Ten years after ruxolitinib approval for myelofibrosis: a review of clinical efficacy. Leuk Lymphoma. 2023;64(6):1063–81.
Article CAS PubMed Google Scholar
Naymagon L, Mascarenhas J. Myelofibrosis-related anemia: current and emerging therapeutic strategies. Hemasphere. 2017;1(1):e1 (Published 2017 Dec 20).
Article PubMed PubMed Central Google Scholar
Tefferi A, Lasho TL, Jimma T, et al. One thousand patients with primary myelofibrosis: the Mayo Clinic experience. Mayo Clin Proc. 2012;87:25–33.
Article PubMed PubMed Central Google Scholar
Cervantes F, Pereira A. Prognostication in primary myelofibrosis. Curr Hematol Malig Rep. 2012;7:43–9.
Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901.
Article CAS PubMed Google Scholar
Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8.
Article CAS PubMed Google Scholar
Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7.
Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017;31(12):2726–31.
Article CAS PubMed Google Scholar
Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: mutation-enhanced International Prognostic Score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36(4):310–8.
Article CAS PubMed Google Scholar
Passamonti F, Harrison CN, Mesa RA, et al. Anemia in myelofibrosis: current and emerging treatment options. Crit Rev Oncol Hematol. 2022;180: 103862.
Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(5):801–21.
Article CAS PubMed Google Scholar
Fisher DAC, Fowles JS, Zhou A, et al. Inflammatory pathophysiology as a contributor to myeloproliferative neoplasms. Front Immunol. 2021;12:683401 (Published 2021 Jun 1).
Article CAS PubMed PubMed Central Google Scholar
Sollazzo D, Forte D, Polverelli N, et al. Crucial factors of the inflammatory microenvironment (IL-1β/TNF-α/TIMP-1) promote the maintenance of the malignant hemopoietic clone of myelofibrosis: an in vitro study. Oncotarget. 2016;7(28):43974–88.
Article PubMed PubMed Central Google Scholar
Simel DL, DeLong ER, Feussner JR, et al. Erythrocyte anisocytosis. Visual inspection of blood films vs automated analysis of red blood cell distribution width. Arch Intern Med. 1988;148(4):822–4.
Article CAS PubMed Google Scholar
de Gonzalo-Calvo D, de Luxán-Delgado B, Rodríguez-González S, et al. Interleukin 6, soluble tumor necrosis factor receptor I and red blood cell distribution width as biological markers of functional dependence in an elderly population: a translational approach. Cytokine. 2012;58(2):193–8.
Lippi G, Targher G, Montagnana M, et al. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients [published correction appears in Arch Pathol Lab Med. 2009 Aug; 133(8):1186]. Arch Pathol Lab Med. 2009;133(4):628–32.
Article CAS PubMed Google Scholar
Tonelli M, Sacks F, Arnold M, et al. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008;117:163–8.
Ellingsen TS, Lappegard J, Skjelbakken T, et al. Red cell distribution width is associated with incident venous thromboembolism (VTE) and case-fatality after VTE in a general population. Thromb Haemostasis. 2015;113:193–200.
Comments (0)