Dihydromyricetin restores lysosomal function in Schwann cells to alleviate bortezomib-induced peripheral neuropathy via ERK/TFEB signaling

Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112:1593–1599. https://doi.org/10.1182/blood-2008-04-149385

Article  CAS  PubMed  Google Scholar 

Argyriou AA, Cavaletti G, Bruna J et al (2014) Bortezomib-induced peripheral neurotoxicity: an update. Arch Toxicol 88:1669–1679. https://doi.org/10.1007/s00204-014-1316-5

Article  PubMed  Google Scholar 

Bruna J, Udina E, Alé A et al (2010) Neurophysiological, histological and immunohistochemical characterization of bortezomib-induced neuropathy in mice. Exp Neurol 223:599–608. https://doi.org/10.1016/j.expneurol.2010.02.006

Article  CAS  PubMed  Google Scholar 

Cea M, Cagnetta A, Patrone F et al (2013) Intracellular NAD(+) depletion induces autophagic death in multiple myeloma cells. Autophagy 9:410–412. https://doi.org/10.4161/auto.22866

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhry V, Cornblath DR, Polydefkis M et al (2008) Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst JPNS 13:275–282. https://doi.org/10.1111/j.1529-8027.2008.00193.x

Article  CAS  PubMed  Google Scholar 

Chen S, Zhao X, Wan J et al (2015) Dihydromyricetin improves glucose and lipid metabolism and exerts anti-inflammatory effects in nonalcoholic fatty liver disease: a randomized controlled trial. Pharmacol Res 99:74–81. https://doi.org/10.1016/j.phrs.2015.05.009

Article  CAS  PubMed  Google Scholar 

Chen L, Shi M, Lv C et al (2021a) Dihydromyricetin acts as a potential redox balance mediator in cancer chemoprevention. Mediators Inflamm 2021:6692579. https://doi.org/10.1155/2021/6692579

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Guan Y, Zhang Y et al (2021b) Programmed cell death 4 modulates lysosomal function by inhibiting TFEB translation. Cell Death Differ 28:1237–1250. https://doi.org/10.1038/s41418-020-00646-2

Article  CAS  PubMed  Google Scholar 

Chen J, Cao W, Huang X et al (2023) TRIM21 enhances bortezomib sensitivity in multiple myeloma by halting prosurvival autophagy. Blood Adv 7:5752–5770. https://doi.org/10.1182/bloodadvances.2022008241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou C-H, Lu K-H, Yang J-S et al (2021) Dihydromyricetin suppresses cell metastasis in human osteosarcoma through SP-1- and NF-κB-modulated urokinase plasminogen activator inhibition. Phytomedicine 90:153642. https://doi.org/10.1016/j.phymed.2021.153642

Article  CAS  PubMed  Google Scholar 

Chun YS, Kim M-Y, Lee S-Y et al (2022) MEK1/2 inhibition rescues neurodegeneration by TFEB-mediated activation of autophagic lysosomal function in a model of Alzheimer’s Disease. Mol Psychiatry 27:4770–4780. https://doi.org/10.1038/s41380-022-01713-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan K-J, Yang B, Liu Y et al (2017) Inhibition of human lung cancer proliferation through targeting stromal fibroblasts by dihydromyricetin. Mol Med Rep 16:9758–9762. https://doi.org/10.3892/mmr.2017.7802

Article  CAS  PubMed  Google Scholar 

Fang J, Lou S, Zhou X et al (2024) Dihydromyricetin reverses capecitabine-induced peripheral myelin dysfunction through modulation of oxidative stress. Clin Exp Pharmacol Physiol 51:e13833. https://doi.org/10.1111/1440-1681.13833

Article  CAS  PubMed  Google Scholar 

Ge H, Guan S, Shen Y et al (2019) Dihydromyricetin affects BDNF levels in the nervous system in rats with comorbid diabetic neuropathic pain and depression. Sci Rep 9:14619. https://doi.org/10.1038/s41598-019-51124-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge H, Sun M, Wei X et al (2020) Protective effects of dihydromyricetin on primary hippocampal astrocytes from cytotoxicity induced by comorbid diabetic neuropathic pain and depression. Purinergic Signal 16:585–599. https://doi.org/10.1007/s11302-020-09752-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M et al (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210:153–168. https://doi.org/10.1083/jcb.201503019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan S, Shen Y, Ge H et al (2019) Dihydromyricetin alleviates diabetic neuropathic pain and depression comorbidity symptoms by inhibiting P2X7 receptor. Front Psychiatry 10:770. https://doi.org/10.3389/fpsyt.2019.00770

Article  PubMed  PubMed Central  Google Scholar 

Hsin M-C, Hsiao Y-H, Chen P-N et al (2022) Dihydromyricetin inhibited migration and invasion by reducing S100A4 expression through ERK1/2/β-catenin pathway in human cervical cancer cell lines. Int J Mol Sci 23:15106. https://doi.org/10.3390/ijms232315106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Chen B, Wang H et al (2022a) Dihydromyricetin attenuates depressive-like behaviors in mice by inhibiting the AGE-RAGE signaling pathway. Cells 11:3730. https://doi.org/10.3390/cells11233730

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Cao W, Yao S et al (2022b) NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death Dis 13:197. https://doi.org/10.1038/s41419-022-04629-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang W, Zhou M (2024) Analysis of the role of dihydromyricetin derived from vine tea (Ampelopsis grossedentata) on multiple myeloma by activating STAT1/RIG-I axis. Oncol Res 32:1359–1368. https://doi.org/10.32604/or.2024.043423

Article  PubMed  PubMed Central  Google Scholar 

Kessel DH, Price M, Reiners JJ (2012) ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy 8:1333–1341. https://doi.org/10.4161/auto.20792

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li R, Li D, Wu C et al (2020) Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 10:1649–1677. https://doi.org/10.7150/thno.40919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X-J, Pang C, Peng Z et al (2023) Dihydromyricetin confers cerebroprotection against subarachnoid hemorrhage via the Nrf2-dependent Prx2 signaling cascade. Phytomedicine 119:154997. https://doi.org/10.1016/j.phymed.2023.154997

Article  CAS  PubMed  Google Scholar 

Ling H, Zhu Z, Yang J et al (2018) Dihydromyricetin improves type 2 diabetes-induced cognitive impairment via suppressing oxidative stress and enhancing brain-derived neurotrophic factor-mediated neuroprotection in mice. Acta Biochim Biophys Sin 50:298–306. https://doi.org/10.1093/abbs/gmy003

Article  CAS  PubMed  Google Scholar 

Liu L, Zhou M, Lang H et al (2018) Dihydromyricetin enhances glucose uptake by inhibition of MEK/ERK pathway and consequent down-regulation of phosphorylation of PPARγ in 3T3-L1 cells. J Cell Mol Med 22:1247–1256. https://doi.org/10.1111/jcmm.13403

Article  CAS  PubMed  Google Scholar 

Liu X, Li Y, Chen S et al (2023) Dihydromyricetin attenuates intracerebral hemorrhage by reversing the effect of LCN2 via the system Xc- pathway. Phytomedicine 115:154756. https://doi.org/10.1016/j.phymed.2023.154756

Article 

Comments (0)

No login
gif