Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol 9:1–5. https://doi.org/10.1186/1471-2377-9-S1-S3
Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140. https://doi.org/10.1016/S0021-9258(19)50881-X
Article CAS PubMed Google Scholar
Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. https://doi.org/10.1016/j.cmet.2011.08.016
Article CAS PubMed Google Scholar
Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
Article CAS PubMed Google Scholar
Brandts I, Teles M, Tvarijonaviciute A, Pereira ML, Martins MA, Tort L, Oliveira M (2018) Effects of polymethylmethacrylate nanoplastics on Dicentrarchus labrax. Genomics 110:435–441. https://doi.org/10.1016/j.ygeno.2018.10.006
Article CAS PubMed Google Scholar
Capó X, Alomar C, Compa M, Sole M, Sanahuja I, Soliz Rojas DL, Paniagua González G, Garcinuño Martínez RM, Deudero S (2022) Quantification of differential tissue biomarker responses to microplastic ingestion and plasticizer bioaccumulation in aquaculture reared sea bream Sparus aurata. Environ Res 211:113063. https://doi.org/10.1016/j.envres.2022.113063
Article CAS PubMed Google Scholar
Carageorgiou H, Tzotzes V, Sideris A, Zarros A, Tsakiris S (2005) Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: modulation by zinc, calcium and L-cysteine co-administration. Basic Clin Pharmacol Toxicol 97:320–324. https://doi.org/10.1111/j.1742-7843.2005.pto_174.x
Article CAS PubMed Google Scholar
Chen J, Zhao S, Wesseling S, Kramer N, Rietjens I, Bouwmeester H (2023) Acetylcholinesterase inhibition in rats and humans following acute fenitrothion exposure predicted by physiologically based kinetic modelling-facilitated quantitative in vitro to in vivo extrapolation. Environ Sci Technol 57:20521–20531. https://doi.org/10.1021/acs.est.3c07077
Article CAS PubMed PubMed Central Google Scholar
Chermoff N, Hill DJ, Chorus I, Diggs DL, Huang H, King D, Lang JR, Le TT, Schmid JE, Travlos GS, Whitley EM, Wilson RE, Wood CR (2018) Cylindrospermopsin toxicity in mice follow a 90-d oral exposure. J Toxicol Environ Health A 81:549–566. https://doi.org/10.1080/15287394.2018.1460787
Coban FK, Ince S, Kucukkurt I, Demirel HH, Hazman O (2015) Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 38:391–399. https://doi.org/10.3109/01480545.2014.974109
Article CAS PubMed Google Scholar
Codd GA, Testai E, Funari E, Svirčev Z (2020) Cyanobacteria, cyanotoxins, and human health. In: Hiskia E, Triantis TM, Antoniou MG, Kaloudis T, Dionysiou DD (eds) Water treatment for purification from cyanobacteria and cyanotoxins. John Wiley & Sons Ltd, Chichester, pp 37–68
Da Silva RC, Grötzner SR, Moura Costa DD, Garcia JRE, Muelbert J, de Magalhães VF, Neto FF, Ribeiro AO (2018) Comparative bioaccumulation and effects of purified and cellular extract of cylindrospermopsin to freshwater fish Hoplias malabaricus. J Toxicol Environ Health A 81:620–632. https://doi.org/10.1080/15287394.2018.1469101
Article CAS PubMed Google Scholar
Đorđević NB, Matić SL, Simić SB, Stanić SM, Mihailović VB, Stanković NM, Stanković VD, Ćirić R (2017) Impact of the toxicity of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju on laboratory rats in vivo. Environ Sci Pollut Res 24:14259–14272. https://doi.org/10.1007/s11356-017-8940-6
Ellman GL, Courtney KD, Anders V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Article CAS PubMed Google Scholar
Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonetal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-h
Article CAS PubMed Google Scholar
FAO, Food and Agriculture Organization (2007) Pesticides in food report 2007, FAO plant production and protection paper 191. Food and Agriculture Organization, Rome, Italy
Gutiérrez-Praena D, Jos A, Pichardo S, Cameán AM (2011) Oxidative stress responses in tilapia (Oreochromis niloticus) exposed to a single dose of pure cylindrospermopsin under laboratory conditions: influence of exposure route and time of sacrifice. Aquat Toxicol 105:100–106. https://doi.org/10.1016/j.aquatox.2011.05.015
Article CAS PubMed Google Scholar
Gutiérrez-Praena D, Jos A, Pichardo S, Moyano R, Blanco A, Monterde JG, Cameán AM (2012) Time-dependent histopathological changes induced in Tilapia (Oreochromis niloticus) after acute exposure to pure cylindrospermopsin by oral and intraperitoneal route. Ecotoxicol Environ Saf 76:102–113. https://doi.org/10.1016/j.ecoenv.2011.10.008
Article CAS PubMed Google Scholar
Guzmán-Guillén R, Lomares Manzano I, Moreno IM, Prieto AI, Moyano R, Blanco A, Cameán AM (2015a) Cylindrospermopsin induced neurotoxicity in tilapia fish (Oreochromis niloticus) exposed to Aphanizomenon ovalisporum. Aquat Toxicol 161:17–24. https://doi.org/10.1016/j.aquatox.2015.01.024
Article CAS PubMed Google Scholar
Guzmán-Guillén R, Moreno I, Prieto AI, Soria-Díaz ME, Vasconcelos V, Cameán AM (2015b) CYN determination in tissues from freshwater fish by LC-MS/MS: validation and application in tissues from subchronically exposed tilapia (Oreochromis niloticus). Talanta 131:452–459. https://doi.org/10.1016/j.talanta.2014.07.091
Article CAS PubMed Google Scholar
Hinojosa MG, Gutiérrez-Praena D, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM (2019a) Neurotoxicity induced by microcystins and cylindrospermopsin: a review. Sci Total Environ 668:547–565. https://doi.org/10.1016/j.scitotenv.2019.02.426
Article CAS PubMed Google Scholar
Hinojosa MG, Prieto AI, Gutiérrez-Praena D, Moreno FJ, Cameán AM, Jos A (2019b) Neurotoxic assessment of Microcystin-LR, cylindrospermopsin and their combinatiotion on the human neuroblastoma SH-SY5Y cell line. Chemosphere 224:751–764. https://doi.org/10.1016/j.chemosphere.2019.02.173
Article CAS PubMed Google Scholar
Hinojosa MG, Prieto AI, Muñoz-Castro C, Sánchez-Mico MV, Vitorica J, Cameán AM, Jos A (2022) Cytotoxicity and effects on the synapsis induced by pure cylindrospermopsin in an E17 embryonic murine primary neuronal culture in a concentration- and time-dependent manner. Toxins 14:175. https://doi.org/10.3390/toxins14030175
Article CAS PubMed PubMed Central Google Scholar
Hinojosa MG, Cascajosa-Lira A, Prieto AI, Gutiérrez-Praena D, Vasconcelos V, Jos A, Cameán AM (2023) Cytotoxic Effects and oxidative stress produced by a cyanobacterial cylindrospermopsin producer extract versus a cylindrospermopsin non-producing extract on the neuroblastoma SH-SY5Y cell line. Toxins (Basel) 15:320. https://doi.org/10.3390/toxins15050320
Article CAS PubMed Google Scholar
Humpage AR, Fontaine F, Froscio S, Burcham P, Falconer IR (2005) Cylindrospermopsin genotoxicity and cytotoxicity: role of cytochrome P-450 and oxidative stress. J Toxicol Environ Health A 68:739–753. https://doi.org/10.1080/15287390590925465
Article CAS PubMed Google Scholar
Kinnear SHW, Fabbro LD, Duivenvoorden LJ, Hibberd EMA (2007) Multiple-organ toxicity resulting from cylindrospermopsin exposure in tadpoles of the cane toad (Bufo marinus). Environ Toxicol 22:550–558. https://doi.org/10.1002/tox.20299
Article CAS PubMed Google Scholar
Kiss T, Vehovsky Á, Hiripi L, Kovács A, Vörös L (2002) Membrane effects of toxins isolated from a cyanobacterium, Cylindrospermopsis raciborskii, on identified molluscan neurones. Comp Biochem Physiol C 131:167–176. https://doi.org/10.1016/s1532-0456(01)00290-3
Kittler K, Hurtaud-Pessel D, Maul R, Kolrep F, Fessard V (2016) In vitro metabolism of the cyanotoxin cylindrospermopsin in HepaRG cells and liver tissue fractions. Toxicon 110:47–50. https://doi.org/10.1016/j.toxicon.2015.11.007
Comments (0)