World Health Organization-cancer [Online]. https://www.who.int/news-room/fact-sheets/detail/cancer.
Cao P, Jeon J, Levy DT, Jayasekera JC, Cadham CJ, et al. Potential impact of cessation interventions at the point of lung cancer screening on lung cancer and overall mortality in the United States. J Thorac Oncol, 2020; 15 (7): 1160–1169.https://doi.org/10.1016/j.jtho.2020.02.008.
Sanghera S, Coast J, Martin RM, Donovan JL, Mohiuddin S. Cost-effectiveness of prostate cancer screening: a systematic review of decision-analytical models. BMC Cancer, 2018; 18 (1): 84.
Pimple SA, Mishra GA. Global strategies for cervical cancer prevention and screening. Minerva Ginecol, 2019; 71 (4): 313–320. https://doi.org/10.23736/S0026-4784.19.04397-1.
Zhao MN, Mi DD, Ferdows BE, Li YK, Wang RJ, et al. State-of-the-art nanotechnologies for the detection, recovery, analysis and elimination of liquid biopsy components in cancer. Nano Today, 2022; 42.https://doi.org/10.1016/j.nantod.2021.101361.
Andersen GB, Tost J. Circulating miRNAs as biomarker in cancer. Recent Results Cancer Res, 2020; 215: 277–298.https://doi.org/10.1007/978-3-030-26439-0_15.
Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomedicine, 2020; 15: 8019–8036.https://doi.org/10.2147/IJN.S272378.
Hristova VA, Chan DW. Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev Proteomics, 2019; 16 (2): 93–103.https://doi.org/10.1080/14789450.2019.1559062.
Mahato K, Kumar A, Maurya PK, Chandra P. Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron, 2018; 100: 411–428.https://doi.org/10.1016/j.bios.2017.09.003.
Fraser LA, Cheung YW, Kinghorn AB, Guo W, Shiu SCC, et al. Microfluidic technology for nucleic acid aptamer evolution and application. Adv Biosyst, 2019; 3 (5): 1900012.https://doi.org/10.1002/adbi.201900012.
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: a review. J Pharm Anal, 2023.https://doi.org/10.1016/j.jpha.2023.08.009.
Sun D, Ma Y, Wu M, Chen Z, Zhang L, et al. Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles. J Pharm Anal, 2023; 13 (4): 340–354.https://doi.org/10.1016/j.jpha.2023.03.001.
Qing L, Wang T, Luo H, Du J, Wang R, et al. Microfluidic strategies for natural products in drug discovery: current status and future perspectives. TrAC Trends in Analytical Chemistry, 2023; 158: 116832.https://doi.org/10.1016/j.trac.2022.116832.
Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci, 2020; 15 (2): 107–122.https://doi.org/10.4103/1735-5362.283811.
Wang QL, Huang WX, Zhang PJ, Chen L, Lio CK, et al. Colorimetric determination of the early biomarker hypoxia-inducible factor-1 alpha (hif-1α) in circulating exosomes by using a gold seed-coated with aptamer-functionalized Au@Au core-shell peroxidase mimic. Mikrochim Acta, 2019; 187 (1): 61. https://doi.org/10.1007/s00604-019-4035-z.
Hassan EM, Derosa MC. Recent advances in cancer early detection and diagnosis: role of nucleic acid based aptasensors. TrAC Trends in Analytical Chemistry, 2020; 124: 115806.https://doi.org/10.1016/j.trac.2020.115806.
Tang MQ, Xie J, Rao LM, Kan YJ, Luo P, et al. Advances in aptamer-based sensing assays for c-reactive protein. Anal Bioanal Chem, 2022; 414 (2): 867–884.https://doi.org/10.1007/s00216-021-03674-0.
Xue J, Chen F, Bai M, Cao X, Fu W, et al. Aptamer-functionalized microdevices for bioanalysis. ACS Appl Mater Interfaces, 2021; 13 (8): 9402–9411.https://doi.org/10.1021/acsami.0c16138.
Wu L, Zhu L, Huang M, Song J, Zhang H, et al. Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. TrAC Trends in Analytical Chemistry, 2019; 117: 69–77.https://doi.org/10.1016/j.trac.2019.05.003.
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, et al. The application of aptamer in biomarker discovery. Biomark Res, 2023; 11 (1): 70. https://doi.org/10.1186/s40364-023-00510-8.
Jin C, Qiu L, Li J, Fu T, Zhang X, et al. Cancer biomarker discovery using DNA aptamers. Analyst, 2016; 141 (2): 461–466. https://doi.org/10.1039/c5an01918d.
Chen Q, Wu J, Zhang Y, Lin Z, Lin J. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip, 2012; 12 (24): 5180.https://doi.org/10.1039/c2lc40858a.
Lou B, Zhou Z, Du Y, Dong S. Resistance-based logic aptamer sensor for CCRF-CEM and Ramos cells integrated on microfluidic chip. Electrochem commun, 2015; 59: 64–67.https://doi.org/10.1016/j.elecom.2015.07.006.
Wu Z, Pan Y, Wang Z, Ding P, Gao T, et al. A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers. J Mater Chem B, 2021; 9 (9): 2212–2220. https://doi.org/10.1039/D0TB02988B.
Wang C, Xu Y, Li S, Zhou Y, Qian Q, et al. Designer tetrahedral DNA framework-based microfluidic technology for multivalent capture and release of circulating tumor cells. Mater Today Bio, 2022; 16: 100346.https://doi.org/10.1016/j.mtbio.2022.100346.
Vu-Dinh H, Feng H, Jen C. Effective isolation for lung carcinoma cells based on immunomagnetic separation in a microfluidic channel. Biosensors, 2021; 11 (1): 23.https://doi.org/10.3390/bios11010023.
Vu-Dinh H, Do Quang L, Chang CC, Nhu CN, Thanh HT, et al. Immunomagnetic separation in a novel cavity-added serpentine microchannel structure for the selective isolation of lung adenocarcinoma cells. Biomed Microdevices, 2021; 23 (4).https://doi.org/10.1007/s10544-021-00589-6.
Mou L, Jiang X. Materials for microfluidic immunoassays: a review. Adv Healthc Mater, 2017; 6 (15).https://doi.org/10.1002/adhm.201601403.
Koh Y, Lee B, Yoon H, Jang Y, Lee Y, et al. Bead affinity chromatography in a temperature-controllable microsystem for biomarker detection. Anal Bioanal Chem, 2012; 404 (8): 2267–2275.https://doi.org/10.1007/s00216-012-6380-1.
Zhao L, Tang C, Xu L, Zhang Z, Li X, et al. Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail. Small, 2016; 12 (8): 1072–1081.https://doi.org/10.1002/smll.201503188.
Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, et al. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem, 2009; 81 (17): 7436–7442.https://doi.org/10.1021/ac9012072.
Maremanda NG, Roy K, Kanwar RK, Shyamsundar V, Ramshankar V, et al. Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells. Biomicrofluidics, 2015; 9 (5). https://doi.org/10.1063/1.4930983.
Turetta M, Ben FD, Brisotto G, Biscontin E, Bulfoni M, et al. Emerging technologies for cancer research: towards personalized medicine with microfluidic platforms and 3D tumor models. Curr Med Chem, 2018; 25 (35): 4616–4637. https://doi.org/10.2174/0929867325666180605122633.
Yeong Won J, Choi J, Min J. Micro-fluidic chip platform for the characterization of breast cancer cells using aptamer-assisted immunohistochemistry. Biosensors and Bioelectronics, 2013; 40 (1): 161–166. https://doi.org/10.1016/j.bios.2012.07.004.
Wang Y, Sun S, Luo J, Xiong Y, Ming T, et al. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst Nanoeng, 2020; 6 (1). https://doi.org/10.1038/s41378-020-0146-2.
Zhou Z, Chen Y, Qian X. Target-specific exosome isolation through aptamer-based microfluidics. Biosensors, 2022; 12 (4): 257. https://doi.org/10.3390/bios12040257.
Zhang W, Lin S, Wang C, Hu J, Li C, et al. PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip, 2009; 9 (21): 3088–3094.https://doi.org/10.1039/b907254c.
Tseng CC, Lu SY, Chen SJ, Wang JM, Fu LM, et al. Microfluidic aptasensor POC device for determination of whole blood potassium. Anal Chim Acta, 2022; 1203: 339722.https://doi.org/10.1016/j.aca.2022.339722.
Obubuafo A, Balamurugan S, Shadpour H, Spivak D, Mccarley RL, et al. Poly(methyl methacrylate) microchip affinity capillary gel electrophoresis of aptamer-protein complexes for the analysis of thrombin in plasma. Electrophoresis, 2008; 29 (16): 3436–3445. https://doi.org/10.1002/elps.200700854.
Dharmasiri U, Balamurugan S, Adams AA, Okagbare PI, Obubuafo A, et al. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis, 2009; 30 (18): 3289–3300.https://doi.org/10.1002/elps.200900141.
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, et al. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater, 2020; 9 (4): 153–174.https://doi.org/10.1007/s40204-020-00139-y.
Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M. Recent microdevice-based aptamer sensors. Micromachines (Basel), 2018; 9 (5).https://doi.org/10.3390/mi9050202.
Chen K, Georgiev TZ, Sheng W, Zheng X, Varillas JI, et al. Tumor cell capture patterns around aptamer-immobilized microposts in microfluidic devices. Biomicrofluidics, 2017; 11 (5): 54110.https://doi.org/10.1063/1.5000707.
Chen W, Li J, Wan X, Zou X, Qi S, et al. Design of a microfluidic chip consisting of micropillars and its use for the enrichment of nasopharyngeal cancer cells. Oncol Lett, 2019; 17 (2): 1581–1588.https://doi.org/10.3892/ol.2018.9771.
Liu Y, Zhang H, Du Y, Zhu Z, Zhang M, et al. Highly sensitive minimal residual disease detection by biomimetic multivalent aptamer nanoclimber functionalized microfluidic chip. Small, 2020; 16 (20): 2000949.https://doi.org/10.1002/smll.202000949.
Zhao W, Cui CH, Bose S, Guo D, Shen C, et al. Bioinspired multivalent DNA network for capture and release of cells. Proceedings of the National Academy of Sciences - PNAS, 2012; 109 (48): 19626–19631.https://doi.org/10.1073/pnas.1211234109.
Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A, 2010; 107 (43): 18392–18397.https://doi.org/10.1073/pnas.1012539107.
Liu Y, Lin Z, Zheng Z, Zhang Y, Shui L. Accurate isolation of circulating tumor cells via a heterovalent dna framework recognition element-functionalized microfluidic chip. ACS Sens, 2022; 7 (2): 666–673.https://doi.org/10.1021/acssensors.1c02692.
Song YL, Shi YZ, Huang MJ, Wang W, Wang Y, et al. Bioinspired engineering of a multivalent aptamer-functionalized nanointerface to enhance the capture and release of circulating tumor cells. Angew Chem Int Ed Engl, 2019; 58 (8): 2236–2240.https://doi.org/10.1002/anie.201809337.
Sheng W, Chen T, Tan W, Fan ZH. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano, 2013; 7 (8): 7067–7076.https://doi.org/10.1021/nn4023747.
Wang T, Huang X, Huang H, Luo P, Qing L. Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: a comprehensive review. Advanced Sensor and Energy Materials, 2022; 1 (3): 100016.https://doi.org/10.1016/j.asems.2022.100016.
Wang Q, Liu L, Chen X, Wang T, Zhou H, et al. Noninvasive prognosis of postmyocardial infarction using urinary miRNA ultratrace detection based on single-target DNA-functionalized AuNPs. ACS Appl Mater Interfaces, 2022; 14 (3): 3633–3642.https://doi.org/10.1021/acsami.1c17883.
Wang Q, Wang T, Lio C, Yu X, Chen X, et al. Surface hydrolysis-designed AuNPs-zwitterionic-glucose as a novel tool for targeting macrophage visualization and delivery into infarcted hearts. J Control Release, 2023; 356: 678–690.https://doi.org/10.1016/j.jconrel.2023.03.008.
Huang J, Luo X, Lee I, Hu Y, Cui XT, et al. Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor. Biosensors and Bioelectronics, 2011; 30 (1): 306–309.https://doi.org/10.1016/j.bios.2011.08.016.
Kashefi-Kheyrabadi L, Kim J, Chakravarty S, Park S, Gwak H, et al. Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosensors and Bioelectronics, 2020; 169: 112622. https://doi.org/10.1016/j.bios.2020.112622.
Lou BH, Zhou ZX, Gu WL, Dong SJ. Microelectrodes integrated into a microfluidic chip for the detection of CCRF-CEM cells based on the electrochemical oxidation of hydrazine. ChemElectroChem, 2016; 3 (12): 2008–2011.https://doi.org/10.1002/celc.201600151.
Su M, Ge L, Ge S, Li N, Yu J, et al. Paper-based electrochemical cyto-device for sensitive detection of cancer cells and in situ anticancer drug screening. Anal Chim Acta, 2014; 847: 1–9.https://doi.org/10.1016/j.aca.2014.08.013.
Wu L, Ma C, Ge L, Kong Q, Yan M, et al. Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosensors and Bioelectronics, 2015; 63: 450–457.https://doi.org/10.1016/j.bios.2014.07.077.
Xing Y, Liu J, Sun S, Ming T, Wang Y, et al. New electrochemical method for programmed death-ligand 1 detection based on a paper-based microfluidic aptasensor. Bioelectrochemistry, 2021; 140: 107789.https://doi.org/10.1016/j.bioelechem.2021.107789.
Zhang X, Wei X, Wu CX, Men X, Wang J, et al. Multiplex profiling of biomarker and drug uptake in single cells using microfluidic flow cytometry and mass spectrometry. ACS Nano, 2024; 18 (8): 6612–6622.https://doi.org/10.1021/acsnano.3c12803.
Liang L, Su M, Li L, Lan F, Yang G, et al. Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sensors and Actuators B: Chemical, 2016; 229: 347–354.https://doi.org/10.1016/j.snb.2016.01.137.
Liu W, Wei H, Lin Z, Mao S, Lin J. Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels. Biosensors and Bioelectronics, 2011; 28 (1): 438–442.https://doi.org/10.1016/j.bios.2011.07.067.
Lin X, Leung K, Lin L, Lin L, Lin S, et al. Determination of cell metabolite vegf165 and dynamic analysis of protein–DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosensors and Bioelectronics, 2016; 79: 41–47. https://doi.org/10.1016/j.bios.2015.11.089.
Huang JA, Zhang YL, Ding H, Sun HB. Sers-enabled lab-on-a-chip systems. Adv Opt Mater, 2015; 3 (5): 618–633.https://doi.org/10.1002/adom.201400534.
Zhang Y, Wang Z, Wu L, Zong S, Yun B, et al. Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip. Small, 2018; 14 (20): 1704433.https://doi.org/10.1002/smll.201704433.
Huang Y, Chen M, Jiang F, Lu C, Zhu Q, et al. Microfluidic-SERS sensing system based on dual signal amplification and aptamer for gastric cancer detection. Mikrochim Acta, 2024; 191 (11): 668.https://doi.org/10.1007/s00604-024-06760-z.
Sheng J, Wang R, Yang H, Zhao Z, Qin S, et al. Surface-enhanced Raman scatting microfluidic chip based on the identification competition strategy were used for rapid and simultaneous detection of liver cancer related proteins. Photodiagnosis Photodyn Ther, 2024; 49: 104336.https://doi.org/10.1016/j.pdpdt.2024.104336.
Cao X, Liu Z, Qin X, Gu Y, Huang Y, et al. Loc-SERS platform for rapid and sensitive detection of colorectal cancer protein biomarkers. Talanta, 2024; 270: 125563.https://doi.org/10.1016/j.talanta.2023.125563.
Zhao L, Wang H, Fu J, Wu X, Liang X, et al. Microfluidic-based exosome isolation and highly sensitive aptamer exosome membrane protein detection for lung cancer diagnosis. Biosensors and Bioelectronics, 2022; 214: 114487.https://doi.org/10.1016/j.bios.2022.114487.
Cao L, Cheng L, Zhang Z, Wang Y, Zhang X, et al. Visual and high-throughput detection of cancer cells using a graphene oxide-based fret aptasensing microfluidic chip. Lab Chip, 2012; 12 (22): 4864.https://doi.org/10.1039/c2lc40564d.
Jolly P, Damborsky P, Madaboosi N, Soares RRG, Chu V, et al. DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosensors and Bioelectronics, 2016; 79: 313–319.https://doi.org/10.1016/j.bios.2015.12.058.
Ren Y, Ge K, Sun D, Hong Z, Jia C, et al. Rapid enrichment and sensitive detection of extracellular vesicles through measuring the phospholipids and transmembrane protein in a microfluidic chip. Biosensors and Bioelectronics, 2022; 199: 113870.https://doi.org/10.1016/j.bios.2021.113870.
Xie L, Li T, Hu F, Jiang Q, Wang Q, et al. A novel microfluidic chip and antibody-aptamer based multianalysis method for simultaneous determination of several tumor markers with polymerization nicking reactions for homogenous signal amplification. Microchem J, 2019; 147: 454–462.https://doi.org/10.1016/j.microc.2019.03.028.
Abate MF, Jia S, Ahmed MG, Li X, Lin L, et al. Visual quantitative detection of circulating tumor cells with single‐cell sensitivity using a portable microfluidic device. Small, 2019; 15 (14): 1804890.https://doi.org/10.1002/smll.201804890.
Vandghanooni S, Sanaat Z, Barar J, Adibkia K, Eskandani M, et al. Recent advances in aptamer-based nanosystems and microfluidics devices for the detection of ovarian cancer biomarkers. TrAC Trends in Analytical Chemistry, 2021; 143: 116343.https://doi.org/10.1016/j.trac.2021.116343.
Nguyen N, Yang C, Liu C, Kuo C, Wu D, et al. An aptamer-based capacitive sensing platform for specific detection of lung carcinoma cells in the microfluidic chip. Biosensors, 2018; 8 (4): 98.https://doi.org/10.3390/bios8040098.
Nguyen N, Jen C. Selective detection of human lung adenocarcinoma cells based on the aptamer-conjugated self-assembled monolayer of gold nanoparticles. Micromachines (Basel), 2019; 10 (3): 195.https://doi.org/10.3390/mi10030195.
Tsai SC, Hung LY, Lee GB. An integrated microfluidic system for the isolation and detection of ovarian circulating tumor cells using cell selection and enrichment methods. Biomicrofluidics, 2017; 11 (3): 34122. https://doi.org/10.1063/1.4991476.
Sheng W, Chen T, Kamath R, Xiong X, Tan W, et al. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal Chem, 2012; 84 (9): 4199–4206.https://doi.org/10.1021/ac3005633.
Chen Y, Pulikkathodi AK, Ma Y, Wang Y, Lee G. A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells. Lab Chip, 2019; 19 (4): 618–625.https://doi.org/10.1039/C8LC01072B.
Wan Y, Tan J, Asghar W, Kim Y, Liu Y, et al. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. The Journal of Physical Chemistry B, 2011; 115 (47): 13891–13896.https://doi.org/10.1021/jp205511m.
Xu CM, Tang M, Feng J, Xia HF, Wu LL, et al. A liquid biopsy-guided drug release system for cancer theranostics: integrating rapid circulating tumor cell detection and precision tumor therapy. Lab Chip, 2020; 20 (8): 1418–1425.https://doi.org/10.1039/d0lc00149j.
Yu D, Gu J, Zhang J, Wang M, Ji R, et al. Integrated microfluidic chip for neutrophil extracellular vesicle analysis and gastric cancer diagnosis. ACS Nano, 2025.https://doi.org/10.1021/acsnano.4c16894.
Gopinathan P, Chiang N, Wang C, Sinha A, Tsai Y, et al. Aptamer probed isolation of circulating tumor cells in cholangiocarcinoma patients. Sensors and Actuators B: Chemical, 2020; 322: 128569.https://doi.org/10.1016/j.snb.2020.128569.
Kajani AA, Rafiee L, Samandari M, Mehrgardi MA, Zarrin B, et al. Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device. RSC Adv, 2022; 12 (51): 32834–32843.https://doi.org/10.1039/D2RA05930D.
Comments (0)