Determination of cyclopiazonic acid in food samples by using molecularly imprinted polymers based on magnetic halloysite nanotubes

Berthiller F, Crews C, Dall’Asta C, Saeger S. de, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. Masked mycotoxins: A review. Mol Nutr Food Res. 2013 57:165–186. https://doi.org/10.1002/mnfr.201100764

Murphy PA, Hendrich S, Landgren C, Bryant CM. Food mycotoxins: An update. J Food Sci. 2006;71:51–65. https://doi.org/10.1111/j.1750-3841.2006.00052.x.

Article  CAS  Google Scholar 

Coulombe R. A. Biological Action of Mycotoxins. JDS. 1993;76: 880–891. https://doi.org/10.3168/jds.S0022-0302(93)77414-7

Bolet-Astoviza M, Socarrás Suárez MM. Micotoxinas y cáncer. Rev Cubana Invest Bioméd. 2005;24:54–9.

Google Scholar 

Wood E. Mycotoxins in food and feeds in the United States. J Anim Sci. 1992;70:3941–9. https://doi.org/10.2527/1992.70123941x.

Article  CAS  PubMed  Google Scholar 

Ekwomadu T, Mwanza M, Musekiwa A. Mycotoxin-Linked Mutations and Cancer Risk: A Global Health Issue. International IJERPH. 2022;19:7754. https://doi.org/10.3390/ijerph19137754.

Article  CAS  Google Scholar 

Wen J, Mu P, Deng Y. Mycotoxins: Cytotoxicity and biotransformation in animal cells. Toxicol Res. 2016;5:377–87. https://doi.org/10.1039/c5tx00293a.

Article  CAS  Google Scholar 

Ma X, Ye Y, Sun J, Ji J, Wang JS, Sun X. Coexposure of Cyclopiazonic Acid with Aflatoxin B1 Involved in Disrupting Amino Acid Metabolism and Redox Homeostasis Causing Synergistic Toxic Effects in Hepatocyte Spheroids. J Agric Food Chem. 2022;70:5166–76. https://doi.org/10.1021/acs.jafc.2c01608.

Article  CAS  PubMed  Google Scholar 

Ostry V, Toman J, Grosse Y, Malir F. Cyclopiazonic acid: 50th anniversary of its discovery. World Mycotoxin J. 2018;11:135–48. https://doi.org/10.3920/WMJ2017.2243.

Article  CAS  Google Scholar 

Chang PK, Ehrlich K, Fujii I. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins. 2009;1:74–99. https://doi.org/10.3390/toxins1020074.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burdock GA, Flamm WG. Review Article: Safety Assessment of the Mycotoxin Cyclopiazonic Acid. Int J Toxicol. 2000;2000(19):195–218. https://doi.org/10.1080/10915810050074964.

Article  Google Scholar 

de Waal EJ. Letter to the Editor-Safety Assessment of Cyclopiazonic Acid. Int J Toxicol. 2002;2002(21):425–7. https://doi.org/10.1080/1091581029009665.

Article  Google Scholar 

Belbruno JJ. Molecularly Imprinted Polymers. Chem Rev. 2019;119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171.

Article  CAS  PubMed  Google Scholar 

Ye L, Mosbach K. Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chem Mater. 2008;20:859–68. https://doi.org/10.1021/cm703190w.

Article  CAS  Google Scholar 

Feng J, Hu Y, Grant E, Lu X. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 2018;239:816–22. https://doi.org/10.1016/j.foodchem.2017.07.014.

Article  CAS  PubMed  Google Scholar 

. Haupt, K. In Molecular imprinting, 1th ed.; Springer, 2012, pp 1–28.

Milojkovi SS, Kostoski D, Comor JJ, Nedeljkovi JM. Radiation induced synthesis of molecularly imprinted polymers. Polymer. 1997;38:2853–5. https://doi.org/10.1016/S0032-3861(97)85624-8.

Article  Google Scholar 

. Santos ACF, de Araújo ORP, Moura FA, Khan S, Tanaka AA, Santana AEG, Pividori MI, Taboada-Sotomayor M del P, Goulart MOF. Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione. Sens. Actuators B: Chem. 2021; 344: 130171 https://doi.org/10.1016/j.snb.2021.130171

Ramin NA, Ramachandran MR, Saleh NM, Ali ZMM, Asma S. Magnetic Nanoparticles Molecularly Imprinted Polymers A Review. Curr Nanosci. 2023;19:372–400. https://doi.org/10.2174/1573413718666220727111319.

Article  CAS  Google Scholar 

Fan JP, Xu XK, Xu R, Zhang XH, Zhu JH. Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus × media. J Chem Eng. 2015;279:567–77. https://doi.org/10.1016/j.cej.2015.05.045.

Article  CAS  Google Scholar 

Wang X, Mao H, Huang W, Guan W, Zou X, Pan J, Yan Y. Preparation of magnetic imprinted polymer particles via microwave heating initiated polymerization for selective enrichment of 2-amino-4-nitrophenol from aqueous solution. J Chem Eng. 2011;178:85–92. https://doi.org/10.1016/j.cej.2011.10.015.

Article  CAS  Google Scholar 

Yeap SP, Lim JK, Ooi BS, Ahmad AL. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J Nano Res. 2017;19:368. https://doi.org/10.1007/s11051-017-4065-6.

Article  CAS  Google Scholar 

Kamble R, Ghag M, Gaikawad S, Kumar Panda B. Halloysite Nanotubes and Applications: A Review. J Adv Sci Res. 2012;3:25–9.

Google Scholar 

Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano. 2020;11: 100076. https://doi.org/10.1016/j.mtnano.2020.100076.

Article  Google Scholar 

Zhang L, Du W, Wang D, Wang F, Fang K, Yu J, Sheng B. Syntheses of polycarboxylate superplasticizers: Microwave induction versus conventional thermal induction. Compos B Eng. 2021;207: 108560. https://doi.org/10.1016/j.compositesb.2020.108560.

Article  CAS  Google Scholar 

Rajaji U, Govindasamy M, Chen SM, Chen TW, Liu X, Chinnapaiyan S. Microwave-assisted synthesis of Bi2WO6 flowers decorated graphene nanoribbon composite for electrocatalytic sensing of hazardous dihydroxybenzene isomers. Compos B Eng. 2018;152:220–30. https://doi.org/10.1016/j.compositesb.2018.07.003.

Article  CAS  Google Scholar 

Guadaño-Sánchez M, Navarro-Villoslada F, Delgado-Soria G, Marco JF, Saura-Muzquiz M, Álvaro-Gómez L, de la Presa P, Pérez L, Urraca JL. Fast and Straightforward Synthesis in Molecular Imprinting: Core-Shell Polymerization of Magnetic Imprinted Polymers by Microwave Induction. ACS Appl Polym Mater. 2024;6:3243–52. https://doi.org/10.1021/ACSAPM.3C03068.

Article  Google Scholar 

Chassaing C, Stokes J, Venn RF, Lanza F, Sellergren B, Holmberg A, Berggren C. Molecularly imprinted polymers for the determination of a pharmaceutical development compound in plasma using 96-well MISPE technology. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;804:71–81. https://doi.org/10.1016/j.jchromb.2003.12.011.

Article  CAS  PubMed  Google Scholar 

Pradanas-González F, Peltomaa R, Lahtinen S, Luque-Uría Á, Más V, Barderas R, Maragos CM, Canales Á, Soukka T, Benito-Peña E, Moreno-Bondi MC. Homogeneous immunoassay for cyclopiazonic acid based upon mimotopes and upconversion resonance energy transfer. Biosens Bioelectron. 2023;233: 115339. https://doi.org/10.1016/j.bios.2023.115339.

Article  CAS  PubMed  Google Scholar 

. Gama FHS, de Souza ROMA, Garden SJ. An efficient green protocol for the preparation of acetoacetamides and application of the methodology to a one-pot synthesis of Biginelli dihydropyrimidines. Expansion of dihydropyrimidine topological chemical space. RSC Adv. 2015; 5: 70915–70928. https://doi.org/10.1039/c5ra14355a

. Liu X, Walsh CT. Cyclopiazonic acid biosynthesis in Aspergillus sp.: Characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochem. 2009; 48: 8746–8757. https://doi.org/10.1021/bi901123r

Urraca JL, Huertas-Pérez JF, Cazorla GA, Gracia-Mora J, García-Campaña AM, Moreno-Bondi MC. Development of magnetic molecularly imprinted polymers for selective extraction: Determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Anal Bioanal Chem. 2016;408:3033–42. https://doi.org/10.1007/S00216-016-9348-8.

Article  CAS  PubMed  Google Scholar 

Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter. 1993;192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I.

Article  Google Scholar 

Thompson P, Cox DE, Hastings JB. Rietveld Refinement of Debye-Scherrer Synchrotron X-ray Data from A1203. J Appl Cryst. 1987;20:79–83. https://doi.org/10.1107/S0021889887087090.

Article  CAS  Google Scholar 

Le Bail A, Duroy H, Fourquet JL. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull. 1988;23:447–52. https://doi.org/10.1016/0025-5408(88)90019-0.

Article  Google Scholar 

. NIST. Standard Reference Material 660b: Lanthanum hexaboride powder line position and line shape standard for powder diffraction SRM certificate. NIST, U.S. Department of Commerce; Gaithersburg, MD, USA;2010.

Greaves C. Rietveld analysis of powder neutron diffraction data displaying anisotropic crystallite size broadening. J Appl Cryst. 1985;19:48–50. https://doi.org/10.1107/S0021889885009761.

Article  Google Scholar 

Niu W, Qiu X, Wu P, Guan W, Zhan Y, Jin L, Zhu N. Unrolling the tubes of halloysite to form dickite and its application in heavy metal ions removal. Appl Clay Sci. 2023;231: 106748.

Article  CAS  Google Scholar 

Comments (0)

No login
gif