Berthiller F, Crews C, Dall’Asta C, Saeger S. de, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. Masked mycotoxins: A review. Mol Nutr Food Res. 2013 57:165–186. https://doi.org/10.1002/mnfr.201100764
Murphy PA, Hendrich S, Landgren C, Bryant CM. Food mycotoxins: An update. J Food Sci. 2006;71:51–65. https://doi.org/10.1111/j.1750-3841.2006.00052.x.
Coulombe R. A. Biological Action of Mycotoxins. JDS. 1993;76: 880–891. https://doi.org/10.3168/jds.S0022-0302(93)77414-7
Bolet-Astoviza M, Socarrás Suárez MM. Micotoxinas y cáncer. Rev Cubana Invest Bioméd. 2005;24:54–9.
Wood E. Mycotoxins in food and feeds in the United States. J Anim Sci. 1992;70:3941–9. https://doi.org/10.2527/1992.70123941x.
Article CAS PubMed Google Scholar
Ekwomadu T, Mwanza M, Musekiwa A. Mycotoxin-Linked Mutations and Cancer Risk: A Global Health Issue. International IJERPH. 2022;19:7754. https://doi.org/10.3390/ijerph19137754.
Wen J, Mu P, Deng Y. Mycotoxins: Cytotoxicity and biotransformation in animal cells. Toxicol Res. 2016;5:377–87. https://doi.org/10.1039/c5tx00293a.
Ma X, Ye Y, Sun J, Ji J, Wang JS, Sun X. Coexposure of Cyclopiazonic Acid with Aflatoxin B1 Involved in Disrupting Amino Acid Metabolism and Redox Homeostasis Causing Synergistic Toxic Effects in Hepatocyte Spheroids. J Agric Food Chem. 2022;70:5166–76. https://doi.org/10.1021/acs.jafc.2c01608.
Article CAS PubMed Google Scholar
Ostry V, Toman J, Grosse Y, Malir F. Cyclopiazonic acid: 50th anniversary of its discovery. World Mycotoxin J. 2018;11:135–48. https://doi.org/10.3920/WMJ2017.2243.
Chang PK, Ehrlich K, Fujii I. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins. 2009;1:74–99. https://doi.org/10.3390/toxins1020074.
Article CAS PubMed PubMed Central Google Scholar
Burdock GA, Flamm WG. Review Article: Safety Assessment of the Mycotoxin Cyclopiazonic Acid. Int J Toxicol. 2000;2000(19):195–218. https://doi.org/10.1080/10915810050074964.
de Waal EJ. Letter to the Editor-Safety Assessment of Cyclopiazonic Acid. Int J Toxicol. 2002;2002(21):425–7. https://doi.org/10.1080/1091581029009665.
Belbruno JJ. Molecularly Imprinted Polymers. Chem Rev. 2019;119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171.
Article CAS PubMed Google Scholar
Ye L, Mosbach K. Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chem Mater. 2008;20:859–68. https://doi.org/10.1021/cm703190w.
Feng J, Hu Y, Grant E, Lu X. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 2018;239:816–22. https://doi.org/10.1016/j.foodchem.2017.07.014.
Article CAS PubMed Google Scholar
. Haupt, K. In Molecular imprinting, 1th ed.; Springer, 2012, pp 1–28.
Milojkovi SS, Kostoski D, Comor JJ, Nedeljkovi JM. Radiation induced synthesis of molecularly imprinted polymers. Polymer. 1997;38:2853–5. https://doi.org/10.1016/S0032-3861(97)85624-8.
. Santos ACF, de Araújo ORP, Moura FA, Khan S, Tanaka AA, Santana AEG, Pividori MI, Taboada-Sotomayor M del P, Goulart MOF. Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione. Sens. Actuators B: Chem. 2021; 344: 130171 https://doi.org/10.1016/j.snb.2021.130171
Ramin NA, Ramachandran MR, Saleh NM, Ali ZMM, Asma S. Magnetic Nanoparticles Molecularly Imprinted Polymers A Review. Curr Nanosci. 2023;19:372–400. https://doi.org/10.2174/1573413718666220727111319.
Fan JP, Xu XK, Xu R, Zhang XH, Zhu JH. Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus × media. J Chem Eng. 2015;279:567–77. https://doi.org/10.1016/j.cej.2015.05.045.
Wang X, Mao H, Huang W, Guan W, Zou X, Pan J, Yan Y. Preparation of magnetic imprinted polymer particles via microwave heating initiated polymerization for selective enrichment of 2-amino-4-nitrophenol from aqueous solution. J Chem Eng. 2011;178:85–92. https://doi.org/10.1016/j.cej.2011.10.015.
Yeap SP, Lim JK, Ooi BS, Ahmad AL. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J Nano Res. 2017;19:368. https://doi.org/10.1007/s11051-017-4065-6.
Kamble R, Ghag M, Gaikawad S, Kumar Panda B. Halloysite Nanotubes and Applications: A Review. J Adv Sci Res. 2012;3:25–9.
Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano. 2020;11: 100076. https://doi.org/10.1016/j.mtnano.2020.100076.
Zhang L, Du W, Wang D, Wang F, Fang K, Yu J, Sheng B. Syntheses of polycarboxylate superplasticizers: Microwave induction versus conventional thermal induction. Compos B Eng. 2021;207: 108560. https://doi.org/10.1016/j.compositesb.2020.108560.
Rajaji U, Govindasamy M, Chen SM, Chen TW, Liu X, Chinnapaiyan S. Microwave-assisted synthesis of Bi2WO6 flowers decorated graphene nanoribbon composite for electrocatalytic sensing of hazardous dihydroxybenzene isomers. Compos B Eng. 2018;152:220–30. https://doi.org/10.1016/j.compositesb.2018.07.003.
Guadaño-Sánchez M, Navarro-Villoslada F, Delgado-Soria G, Marco JF, Saura-Muzquiz M, Álvaro-Gómez L, de la Presa P, Pérez L, Urraca JL. Fast and Straightforward Synthesis in Molecular Imprinting: Core-Shell Polymerization of Magnetic Imprinted Polymers by Microwave Induction. ACS Appl Polym Mater. 2024;6:3243–52. https://doi.org/10.1021/ACSAPM.3C03068.
Chassaing C, Stokes J, Venn RF, Lanza F, Sellergren B, Holmberg A, Berggren C. Molecularly imprinted polymers for the determination of a pharmaceutical development compound in plasma using 96-well MISPE technology. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;804:71–81. https://doi.org/10.1016/j.jchromb.2003.12.011.
Article CAS PubMed Google Scholar
Pradanas-González F, Peltomaa R, Lahtinen S, Luque-Uría Á, Más V, Barderas R, Maragos CM, Canales Á, Soukka T, Benito-Peña E, Moreno-Bondi MC. Homogeneous immunoassay for cyclopiazonic acid based upon mimotopes and upconversion resonance energy transfer. Biosens Bioelectron. 2023;233: 115339. https://doi.org/10.1016/j.bios.2023.115339.
Article CAS PubMed Google Scholar
. Gama FHS, de Souza ROMA, Garden SJ. An efficient green protocol for the preparation of acetoacetamides and application of the methodology to a one-pot synthesis of Biginelli dihydropyrimidines. Expansion of dihydropyrimidine topological chemical space. RSC Adv. 2015; 5: 70915–70928. https://doi.org/10.1039/c5ra14355a
. Liu X, Walsh CT. Cyclopiazonic acid biosynthesis in Aspergillus sp.: Characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochem. 2009; 48: 8746–8757. https://doi.org/10.1021/bi901123r
Urraca JL, Huertas-Pérez JF, Cazorla GA, Gracia-Mora J, García-Campaña AM, Moreno-Bondi MC. Development of magnetic molecularly imprinted polymers for selective extraction: Determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Anal Bioanal Chem. 2016;408:3033–42. https://doi.org/10.1007/S00216-016-9348-8.
Article CAS PubMed Google Scholar
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter. 1993;192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I.
Thompson P, Cox DE, Hastings JB. Rietveld Refinement of Debye-Scherrer Synchrotron X-ray Data from A1203. J Appl Cryst. 1987;20:79–83. https://doi.org/10.1107/S0021889887087090.
Le Bail A, Duroy H, Fourquet JL. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull. 1988;23:447–52. https://doi.org/10.1016/0025-5408(88)90019-0.
. NIST. Standard Reference Material 660b: Lanthanum hexaboride powder line position and line shape standard for powder diffraction SRM certificate. NIST, U.S. Department of Commerce; Gaithersburg, MD, USA;2010.
Greaves C. Rietveld analysis of powder neutron diffraction data displaying anisotropic crystallite size broadening. J Appl Cryst. 1985;19:48–50. https://doi.org/10.1107/S0021889885009761.
Niu W, Qiu X, Wu P, Guan W, Zhan Y, Jin L, Zhu N. Unrolling the tubes of halloysite to form dickite and its application in heavy metal ions removal. Appl Clay Sci. 2023;231: 106748.
Comments (0)