Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, Sanchez JM, Higginbottom SK, Guthrie L, Fall LA, Dodd D, Fischbach MA, Sonnenburg JL. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature. 2021;595(7867):415–20. https://doi.org/10.1038/s41586-021-03707-9.
Article CAS PubMed PubMed Central Google Scholar
Gu W, Tong Z. Clinical application of metabolomics in pancreatic diseases: a mini-review. Lab Med. 2020;51(2):116–21. https://doi.org/10.1093/labmed/lmz046.
Roux A, Lison D, Junot C, Heilier JF. Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem. 2011;44(1):119–35. https://doi.org/10.1016/j.clinbiochem.2010.08.016.
Article CAS PubMed Google Scholar
Abdelhafez OH, Othman EM, Fahim JR, Desoukey SY, Pimentel-Elardo SM, Nodwell JR, Schirmeister T, Tawfike A, Abdelmohsen UR. Metabolomics analysis and biological investigation of three Malvaceae plants. Phytochem Anal. 2020;31(2):204–14. https://doi.org/10.1002/pca.2883.
Article CAS PubMed Google Scholar
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol. 2022;20(3):143–60. https://doi.org/10.1038/s41579-021-00621-9.
Article CAS PubMed Google Scholar
Nash WJ, Dunn WB. From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry data. TrAC-Trend Anal Chem. 2019;120: 115234. https://doi.org/10.1016/j.trac.2018.11.022.
Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44–50. https://doi.org/10.1016/j.copbio.2018.07.010.
Article CAS PubMed Google Scholar
Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, van Ommen B, Lindon JC, Sansone SA. The metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):175–8. https://doi.org/10.1007/s11306-007-0070-6.
da Silva RR, Dorrestein PC, Quinn RA. Illuminating the dark matter in metabolomics. Proc Natl Acad Sci USA. 2015;112(41):12549–50. https://doi.org/10.1073/pnas.1516878112.
Article CAS PubMed PubMed Central Google Scholar
Wishart DA-O, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee BL, Berjanskii M, Mah R, Yamamoto M, Jovel J, Torres-Calzada C, Hiebert-Giesbrecht M, Lui VW, Varshavi D, Varshavi D, Allen D, Arndt D, Khetarpal N, Sivakumaran A, Harford K, Sanford S, Yee K, Cao X, Budinski Z, Liigand J, Zhang L, Zheng J, Mandal R, Karu N, Dambrova M, Schiöth HB, Greiner R, Gautam V. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2022;50(D1):D622–31. https://doi.org/10.1093/nar/gkab1062.
Article CAS PubMed Google Scholar
Montenegro-Burke JR, Guijas C, Siuzdak G. METLIN: a tandem mass spectral library of standards. Methods Mol Biol. 2020;2104:149–63. https://doi.org/10.1007/978-1-0716-0239-3_9.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37:W623-33. https://doi.org/10.1093/nar/gkp456.
Monge ME, Dodds JN, Baker ES, Edison AS, Fernández FM. Challenges in identifying the dark molecules of life. Annu Rev Anal Chem. 2019;12:177–99. https://doi.org/10.1146/annurev-anchem-061318-114959.
Vasilopoulou CG, Sulek K, Brunner AD, Meitei NS, Schweiger-Hufnagel U, Meyer SW, Barsch A, Mann M, Meier F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun. 2020;11(1):331. https://doi.org/10.1038/s41467-019-14044-x.
Article CAS PubMed PubMed Central Google Scholar
Cubiella J, Clos-Garcia M, Alonso C, Martinez-Arranz I, Perez-Cormenzana M, Barrenetxea Z, Berganza J, Rodríguez-Llopis I, D’Amato M, Bujanda L, Diaz-Ondina M, Falcón-Pérez JM. Targeted UPLC-MS metabolic analysis of human faeces reveals novel low-invasive candidate markers for colorectal cancer. Cancers (Basel). 2018;10(9):300. https://doi.org/10.3390/cancers10090300.
Article CAS PubMed Google Scholar
Köfeler HC, Eichmann TO, Ahrends R, Bowden JA, Danne-Rasche N, Dennis EA, Fedorova M, Griffiths WJ, Han X, Hartler J, Holčapek M, Jirásko R, Koelmel JP, Ejsing CS, Liebisch G, Ni Z, O’Donnell VB, Quehenberger O, Schwudke D, Shevchenko A, Wakelam MJO, Wenk MR, Wolrab D, Ekroos K. Quality control requirements for the correct annotation of lipidomics data. Nat Commun. 2021;12(1):4771. https://doi.org/10.1038/s41467-021-24984-y.
Article CAS PubMed PubMed Central Google Scholar
Zhao X, Zeng Z, Chen A, Lu X, Zhao C, Hu C, Zhou L, Liu X, Wang X, Hou X, Ye Y, Xu G. Comprehensive strategy to construct in-house database for accurate and batch identification of small molecular metabolites. Anal Chem. 2018;90(12):7635–43. https://doi.org/10.1021/acs.analchem.8b01482.
Article CAS PubMed Google Scholar
Kind T, Tsugawa H, Cajka T, Ma Y, Lai ZJ, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M, Fiehn O. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018;37(4):513–32. https://doi.org/10.1002/mas.21535.
Article CAS PubMed Google Scholar
Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinforma. 2006;7: 234. https://doi.org/10.1186/1471-2105-7-234.
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14. https://doi.org/10.1002/jms.1777.
Article CAS PubMed Google Scholar
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6. https://doi.org/10.1038/nmeth.3393.
Article CAS PubMed PubMed Central Google Scholar
Samokhin A, Sotnezova K, Lashin V, Revelsky I. Evaluation of mass spectral library search algorithms implemented in commercial software. J Mass Spectrom. 2015;50(6):820–5. https://doi.org/10.1002/jms.3591.
Article CAS PubMed Google Scholar
Kim S, Zhang X. Comparative analysis of mass spectral similarity measures on peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry. Comput Math Method Med. 2013;2013:12. https://doi.org/10.1155/2013/509761.
Koo I, Zhang X, Kim S. Wavelet- and fourier-transform-based spectrum similarity approaches to compound identification in gas chromatography/mass spectrometry. Anal Chem. 2011;83(14):5631–8. https://doi.org/10.1021/ac200740w.
Article CAS PubMed PubMed Central Google Scholar
Stein SE. Estimating probabilities of correct identification from results of mass spectral library searches. J Am Soc Mass Spectrom. 1994;5(4):316–23. https://doi.org/10.1016/1044-0305(94)85022-85024.
Article CAS PubMed Google Scholar
Li Y, Kind T, Folz J, Vaniya A, Mehta SA-O, Fiehn OA-O. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat Methods. 2021;18:1524–31. https://doi.org/10.1038/s41592-021-01331-z.
Article CAS PubMed PubMed Central Google Scholar
Bogusz MJ, Maier RD, Kruger KD, Webb KS, Romeril J, Miller ML. Poor reproducibility of in-source collisional atmospheric pressure ionization mass spectra of toxicologically relevant drugs. J Chromatogr A. 1999;844(1–2):409–18. https://doi.org/10.1016/s0021-9673(99)00312-x.
Comments (0)