Congenital Bone Disorders Associated with ERI1-Mediated RNA Metabolism Dysfunction: Spondylo-Epi-Metaphyseal Dysplasia Guo-Campeau Type and Beyond

Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. Elegans. Nature. 2004;427(6975):645–9. https://doi.org/10.1038/nature02302.

Article  PubMed  Google Scholar 

Hoefig KP, Rath N, Heinz GA, et al. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat Struct Mol Biol. 2013;20(1):73–81. https://doi.org/10.1038/nsmb.2450.

Article  PubMed  Google Scholar 

Gabel HW, Ruvkun G. The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat Struct Mol Biol. 2008;15(5):531–3. https://doi.org/10.1038/nsmb.1411.

Article  PubMed  PubMed Central  Google Scholar 

Volpe TA, Kidner C, Hall IM, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297(5588):1833–7. https://doi.org/10.1126/science.1074973.

Article  PubMed  Google Scholar 

Guo L, Salian S, Xue JY, et al. Null and missense mutations of ERI1 cause a recessive phenotypic dichotomy in humans. Am J Hum Genet. 2023;110(7):1068–85. https://doi.org/10.1016/j.ajhg.2023.05.012.

Article  PubMed  PubMed Central  Google Scholar 

Lee RC, Hammell CM, Ambros V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA. 2006;12(4):589–97. https://doi.org/10.1261/rna.2231506.

Article  PubMed  PubMed Central  Google Scholar 

Gent JI, Lamm AT, Pavelec DM, et al. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. Elegans soma. Mol Cell. 2010;37(5):679–89. https://doi.org/10.1016/j.molcel.2010.01.012.

Article  PubMed  PubMed Central  Google Scholar 

Gent JI, Schvarzstein M, Villeneuve AM, et al. A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics. 2009;183(4):1297–314. https://doi.org/10.1534/genetics.109.108134.

Article  PubMed  PubMed Central  Google Scholar 

Takabatake Y, Isaka Y, Mizui M, et al. Chemically modified siRNA prolonged RNA interference in renal disease. Biochem Biophys Res Commun. 2007;363(2):432–7. https://doi.org/10.1016/j.bbrc.2007.08.189.

Article  PubMed  Google Scholar 

Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14. https://doi.org/10.1016/j.cell.2007.04.040.

Article  PubMed  PubMed Central  Google Scholar 

Bühler M, Mohn F, Stalder L, et al. Transcriptional silencing of nonsense codon-containing immunoglobulin minigenes. Mol Cell. 2005;18(3):307–17. https://doi.org/10.1016/j.molcel.2005.03.030.

Article  PubMed  Google Scholar 

Ansel KM, Pastor WA, Rath N, et al. Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing. Nat Struct Mol Biol. 2008;15(5):523–30. https://doi.org/10.1038/nsmb.1417.

Article  PubMed  PubMed Central  Google Scholar 

Rath N. Characterization of the exonuclease Eri1 in the binding and processing of RNA targets and analysis of its function in mouse development. Dissertation, Ludwig-Maximilians-Universität München, Fakultät für Biologie; 2010.

Morgan M, Kumar L, Li Y, et al. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci. 2021;78(24):8049–71. https://doi.org/10.1007/s00018-021-04012-4.

Article  PubMed  PubMed Central  Google Scholar 

Pirouz M, Munafò M, Ebrahimi AG, et al. Exonuclease requirements for mammalian ribosomal RNA biogenesis and surveillance. Nat Struct Mol Biol. 2019;26(6):490–500. https://doi.org/10.1038/s41594-019-0234-x.

Article  PubMed  PubMed Central  Google Scholar 

Ridanpää M, van Eenennaam H, Pelin K, et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell. 2001;104(2):195–203. https://doi.org/10.1016/s0092-8674(01)00205-7.

Article  PubMed  Google Scholar 

Vega H, Waisfisz Q, Gordillo M, et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet. 2005;37(5):468–70. https://doi.org/10.1038/ng1548.

Article  PubMed  Google Scholar 

Boocock GR, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97–101. https://doi.org/10.1038/ng1062.

Article  PubMed  Google Scholar 

Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42(1):30–5. https://doi.org/10.1038/ng.499.

Article  PubMed  Google Scholar 

Valdez BC, Henning D, So RB, et al. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci U S A. 2004;101(29):10709–14. https://doi.org/10.1073/pnas.0402492101.

Article  PubMed  PubMed Central  Google Scholar 

Jacob P, Lindelöf H, Rustad CF, et al. Clinical, genetic and structural delineation of RPL13-related spondyloepimetaphyseal dysplasia suggest extra-ribosomal functions of eL13. NPJ Genom Med. 2023;8(1):39. https://doi.org/10.1038/s41525-023-00380-x. Published 2023 Nov 22.

Article  PubMed  PubMed Central  Google Scholar 

Han M, Chang M, Kim UJ, et al. Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription. Cell. 1987;48(4):589–97. https://doi.org/10.1016/0092-8674(87)90237-6.

Article  PubMed  Google Scholar 

Sànchez R, Marzluff WF. The stem-loop binding protein is required for efficient translation of histone mRNA in vivo and in vitro. Mol Cell Biol. 2002;22(20):7093–104. https://doi.org/10.1128/MCB.22.20.7093-7104.2002.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Snyder M, Maine EM. Meiotic H3K9me2 distribution is influenced by the ALG-3 and ALG-4 pathway and by poly(U) polymerase activity. MicroPubl Biol. 2021;2021.17912. https://doi.org/10.17912/micropub.biology.000455

Iida T, Kawaguchi R, Nakayama J. Conserved ribonuclease, Eri1, negatively regulates heterochromatin assembly in fission yeast. Curr Biol. 2006;16(14):1459–64. https://doi.org/10.1016/j.cub.2006.05.061.

Article  PubMed  Google Scholar 

Hoxha V, Aliu E. ERI1: a case report of an autosomal recessive syndrome associated with developmental delay and distal limb abnormalities. Am J Med Genet A. 2023;191A:64–9. https://doi.org/10.1002/ajmg.a.62987.

Article  Google Scholar 

Choucair N, Rajab M, Mégarbané A, et al. Homozygous microdeletion of the ERI1 and MFHAS1 genes in a patient with intellectual disability, limb abnormalities, and cardiac malformation. Am J Med Genet A. 2017;173(7):1955–60. https://doi.org/10.1002/ajmg.a.38271.

Article  PubMed  Google Scholar 

Rosati R, Horan GS, Pinero GJ, et al. Normal long bone growth and development in type X collagen-null mice. Nat Genet. 1994;8(2):129–35. https://doi.org/10.1038/ng1094-129.

Article  PubMed  Google Scholar 

Jacenko O, LuValle PA, Olsen BR. Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature. 1993;365(6441):56–61. https://doi.org/10.1038/365056a0.

Article  PubMed  Google Scholar 

Thomas MF, Abdul-Wajid S, Panduro M, et al. Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function. Blood. 2012;120(1):130–42. https://doi.org/10.1182/blood-2011-11-394072.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif