Exploring the value of multiparametric quantitative magnetic resonance imaging in avoiding unnecessary biopsy in patients with PI-RADS 3–4

Siegel R L, Miller K D, Wagle N S, et al., Cancer statistics, 2023. CA Cancer J Clin 2023. 73(1): 17–48. https://doi.org/10.3322/caac.21763.

Article  PubMed  Google Scholar 

Ploussard G, Fiard G, Barret E, et al., French AFU Cancer Committee Guidelines - Update 2022–2024: prostate cancer - Diagnosis and management of localised disease. Prog Urol 2022. 32(15): 1275–1372. https://doi.org/10.1016/j.purol.2022.07.148.

Ehdaie B, Vertosick E, Spaliviero M, et al., The impact of repeat biopsies on infectious complications in men with prostate cancer on active surveillance. J Urol 2014. 191(3): 660-4. https://doi.org/10.1016/j.juro.2013.08.088.

Article  PubMed  Google Scholar 

Falagario U G, Jambor I, Lantz A, et al., Combined Use of Prostate-specific Antigen Density and Magnetic Resonance Imaging for Prostate Biopsy Decision Planning: A Retrospective Multi-institutional Study Using the Prostate Magnetic Resonance Imaging Outcome Database (PROMOD). Eur Urol Oncol 2021. 4(6): 971–979. https://doi.org/10.1016/j.euo.2020.08.014.

Article  PubMed  Google Scholar 

Gan J M, Kikano E G, Smith D A, et al., Clinically Significant Prostate Cancer Detection After a Negative Prebiopsy MRI Examination: Comparison of Biparametric Versus Multiparametric MRI. AJR Am J Roentgenol 2022. 218(5): 859–866. https://doi.org/10.2214/ajr.21.26569.

Article  PubMed  Google Scholar 

Rosenkrantz A B, Kim S, Lim R P, et al., Prostate cancer localization using multiparametric MR imaging: comparison of Prostate Imaging Reporting and Data System (PI-RADS) and Likert scales. Radiology 2013. 269(2): 482– 92. https://doi.org/10.1148/radiol.13122233.

Article  PubMed  Google Scholar 

Barentsz J O, Weinreb J C, Verma S, et al., Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use. Eur Urol 2016. 69(1): 41– 9. https://doi.org/10.1016/j.eururo.2015.08.038.

Article  PubMed  Google Scholar 

Turkbey B, Rosenkrantz A B, Haider M A, et al., Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019. 76(3): 340–351. https://doi.org/10.1016/j.eururo.2019.02.033.

Gaudiano C, Rustici A, Corcioni B, et al., PI-RADS version 2.1 for the evaluation of transition zone lesions: a practical guide for radiologists. Br J Radiol 2022. 95(1131): 20210916. https://doi.org/10.1259/bjr.20210916.

Article  PubMed  PubMed Central  Google Scholar 

Byun J, Park K J, Kim M H, et al., Direct Comparison of PI-RADS Version 2 and 2.1 in Transition Zone Lesions for Detection of Prostate Cancer: Preliminary Experience. J Magn Reson Imaging 2020. 52(2): 577–586. https://doi.org/10.1002/jmri.27080.

Article  PubMed  Google Scholar 

Grivas N, Lardas M, Espinós E L, et al., Prostate Cancer Detection Percentages of Repeat Biopsy in Patients with Positive Multiparametric Magnetic Resonance Imaging (Prostate Imaging Reporting and Data System/Likert 3–5) and Negative Initial Biopsy. A Mini Systematic Review. Eur Urol 2022. 82(5): 452–457. https://doi.org/10.1016/j.eururo.2022.07.025.

Article  PubMed  Google Scholar 

Kawada T, Yanagisawa T, Rajwa P, et al., Diagnostic Performance of Prostate-specific Membrane Antigen Positron Emission Tomography-targeted biopsy for Detection of Clinically Significant Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2022. 5(4): 390–400. https://doi.org/10.1016/j.euo.2022.04.006.

Article  PubMed  Google Scholar 

Zhou J, Payen J F, Wilson D A, et al., Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003. 9(8): 1085-90. https://doi.org/10.1038/nm907.

Article  CAS  PubMed  Google Scholar 

Ward K M, Aletras A H and Balaban R S, A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000. 143(1): 79–87. https://doi.org/10.1006/jmre.1999.1956.

Article  CAS  PubMed  Google Scholar 

Jensen J H, Helpern J A, Ramani A, et al., Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005. 53(6): 1432-40. https://doi.org/10.1002/mrm.20508.

Article  PubMed  Google Scholar 

Yin H, Wang D, Yan R, et al., Comparison of Diffusion Kurtosis Imaging and Amide Proton Transfer Imaging in the Diagnosis and Risk Assessment of Prostate Cancer. Front Oncol 2021. 11: 640906. https://doi.org/10.3389/fonc.2021.640906.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye Y, Gong Z, Song Y, et al., Added value of amide proton transfer-weighted magnetic resonance imaging to Prostate Imaging Reporting and Data System version 2.1 in differentiating clinically significant prostate cancer. Quant Imaging Med Surg 2024. 14(12): 9036–9048. https://doi.org/10.21037/qims-24-1121.

Article  PubMed  PubMed Central  Google Scholar 

Rajabi P, Rezakhaniha B, Galougahi M H K, et al., Unveiling the diagnostic potential of diffusion kurtosis imaging and intravoxel incoherent motion for detecting and characterizing prostate cancer: a meta-analysis. Abdom Radiol (NY) 2024. https://doi.org/10.1007/s00261-024-04454-x.

Article  PubMed  Google Scholar 

Palumbo P, Martinese A, Antenucci M R, et al., Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer. Gland Surg 2023. 12(12): 1806–1822. https://doi.org/10.21037/gs-23-53.

Article  PubMed  PubMed Central  Google Scholar 

Yang L, Wang L, Tan Y, et al., Amide Proton Transfer-weighted MRI combined with serum prostate-specific antigen levels for differentiating malignant prostate lesions from benign prostate lesions: a retrospective cohort study. Cancer Imaging 2023. 23(1): 3. https://doi.org/10.1186/s40644-022-00515-w.

Article  PubMed  PubMed Central  Google Scholar 

Epstein J I, Egevad L, Amin M B, et al., The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol 2016. 40(2): 244– 52. https://doi.org/10.1097/pas.0000000000000530.

Kamimura K, Nakajo M, Yoneyama T, et al., Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions. Jpn J Radiol 2019. 37(2): 109–116. https://doi.org/10.1007/s11604-018-0787-3.

Article  PubMed  Google Scholar 

Guo Z, Qin X, Mu R, et al., Amide Proton Transfer Could Provide More Accurate Lesion Characterization in the Transition Zone of the Prostate. J Magn Reson Imaging 2022. 56(5): 1311–1319. https://doi.org/10.1002/jmri.28204.

Article  PubMed  Google Scholar 

Qin X, Mu R, Zheng W, et al., Comparison and combination of amide proton transfer magnetic resonance imaging and the apparent diffusion coefficient in differentiating the grades of prostate cancer. Quant Imaging Med Surg 2023. 13(2): 812–824. https://doi.org/10.21037/qims-22-721.

Article  PubMed  Google Scholar 

Roethke M C, Kuder T A, Kuru T H, et al., Evaluation of Diffusion Kurtosis Imaging Versus Standard Diffusion Imaging for Detection and Grading of Peripheral Zone Prostate Cancer. Invest Radiol 2015. 50(8): 483–9. https://doi.org/10.1097/rli.0000000000000155.

Article  CAS  PubMed  Google Scholar 

Das C J, Malagi A V, Sharma R, et al., Intravoxel incoherent motion and diffusion kurtosis imaging and their machine-learning-based texture analysis for detection and assessment of prostate cancer severity at 3 T. NMR Biomed 2024. 37(9): e5144. https://doi.org/10.1002/nbm.5144.

Article  CAS  PubMed  Google Scholar 

Steven A J, Zhuo J and Melhem E R, Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol 2014. 202(1): W26-33. https://doi.org/10.2214/ajr.13.11365.

Article  PubMed  Google Scholar 

Nyame Y A, Almassi N, Haywood S C, et al., Intermediate-Term Outcomes for Men with Very Low/Low and Intermediate/High Risk Prostate Cancer Managed by Active Surveillance. J Urol 2017. 198(3): 591–599. https://doi.org/10.1016/j.juro.2017.03.123.

Article  PubMed  Google Scholar 

Buteau J P, Moon D, Fahey M T, et al., Clinical Trial Protocol for PRIMARY2: A Multicentre, Phase 3, Randomised Controlled Trial Investigating the Additive Diagnostic Value of [(68)Ga]Ga-PSMA-11 Positron Emission Tomography/Computed Tomography in Men with Negative or Equivocal Multiparametric Magnetic Resonance Imaging for the Diagnosis of Clinically Significant Prostate Cancer. Eur Urol Oncol 2024. 7(3): 544–552. https://doi.org/10.1016/j.euo.2023.11.008.

Article  PubMed  Google Scholar 

Morote J, Borque-Fernando A, Triquell M, et al., The Barcelona Predictive Model of Clinically Significant Prostate Cancer. Cancers (Basel) 2022. 14(6). https://doi.org/10.3390/cancers14061589.

Comments (0)

No login
gif