L. Wang, B. Lu, M. He, Y. Wang, Z. Wang, L. Du, Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries from 2000 to 2019, Frontiers in Public Health 10 (2022). https://doi.org/10.3389/fpubh.2022.811044
N.D. James, I. Tannock, J. N’Dow, F. Feng, S. Gillessen, S.A. Ali, B. Trujillo, B. AlLazikani, G. Attard, F. Bray, E. Compérat, R. Eeles, O. Fatiregun, E. Grist, S. Halabi, Á. Haran, D. Herchenhorn, M.S. Hofman, M. Jalloh, S. Loeb, A. MacNair, B. Mahal, L. Mendes, M. Moghul, C. Moore, A. Morgans, M. Morris, D. Murphy, V. Murthy, P.L. Nguyen, A. Padhani, C. Parker, H. Rush, M. Sculpher, H. Soule, M.R. Sydes, D. Tilki, N. Tunariu, P. Villanti, L. Xie, The Lancet Commission on Prostate cancer: Planning for the Surge in Cases, The Lancet 403 (2024) 1683–1722. https://doi.org/10.1016/S01406736(24)006512
M. Sekhoacha, K. Riet, P. Motloung, L. Gumenku, A. Adegoke, S. Mashele, Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches, Molecules (Basel, Switzerland) 27 (2022) 5730. https://doi.org/10.3390/molecules27175730
Article CAS PubMed Google Scholar
D.E. Spratt, D.J. McHugh, M.J. Morris, A.K. Morgans, Management of Biochemically Recurrent Prostate Cancer: Ensuring the Right Treatment of the Right Patient at the Right Time, American Society of Clinical Oncology Educational Book (2018) 355–362. https://doi.org/10.1200/EDBK_200319
N.D. Shore, J.W. Moul, K.J. Pienta, J. Czernin, M.T. King, S.J. Freedland, Biochemical Recurrence in Patients with Prostate Cancer after Primary Definitive therapy: Treatment Based on Risk Stratification, Prostate Cancer and Prostatic Diseases 27 (2024) 192–201. https://doi.org/10.1038/s4139102300712z
H. Pinckaers, van Ipenburg, J. Melamed, D. Marzo, E.A. Platz, van Ginneken, G. Litjens, Predicting Biochemical Recurrence of Prostate Cancer with Artificial Intelligence, Communications Medicine 2 (2022) 64. https://doi.org/10.1038/s43856022001263
Article PubMed PubMed Central Google Scholar
D.S.S. Surasi, B. Chapin, C. Tang, G. Ravizzini, T.K. Bathala, Imaging and Management of Prostate Cancer, Seminars in Ultrasound, CT and MRI 41 (2020) 207–221. https://doi.org/10.1053/j.sult.2020.02.001
K. Sklinda, B. Mruk, J. Walecki, Active surveillance of prostate cancer using multiparametric magnetic resonance imaging: A review of the current role and future perspectives, Medical Science Monitor 26 (2020) e920252. https://doi.org/10.12659/MSM.920252
Article CAS PubMed PubMed Central Google Scholar
M. Bekbolatova, J. Mayer, C.W. Ong, M. Toma, Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives, Healthcare 12 (2024) 125–125. https://doi.org/10.3390/healthcare12020125
Article PubMed PubMed Central Google Scholar
R. Pascuzzo, Silvio Ken Garattini, F.M. Doniselli, Clinical Application of Radiomics in Oncology: Where Do We Stand?, Journal of Magnetic Resonance Imaging 60 (2024) 2745–2746. https://doi.org/10.1002/jmri.29340
B. Kocak, E.S. Durmaz, E. Ates, O. Kilickesmez, Radiomics with Artificial intelligence: a Practical Guide for Beginners, Diagnostic and Interventional Radiology 25 (2019) 485–495. https://doi.org/10.5152/dir.2019.19321
Article PubMed PubMed Central Google Scholar
M. Ferro, de C. Ottavio, G. Musi, del Giudice, G. Carrieri, B.G. Maria, F.U. Giovanni, A. Sciarra, M. Maggi, F. Crocetto, B. Barone, V.F. Caputo, M. Marchioni, G. Lucarelli, C. Imbimbo, F.A. Mistretta, S. Luzzago, V.M. Dorin, L. Cormio, R. Autorino, T.O. Sabin, Radiomics in Prostate cancer: an Uptodate Review, Therapeutic Advances in Urology 14 (2022) 17562872221109020. https://doi.org/10.1177/17562872221109020
Article PubMed PubMed Central Google Scholar
S.R. Duenweg, S.A. Bobholz, M.J. Barrett, A.K. Lowman, A. Winiarz, B. Nath, M. Stebbins, J. Bukowy, K.A. Iczkowski, K.M. Jacobsohn, S. Vincent-Sheldon, P.S. LaViolette, T2-Weighted MRI Radiomic Features Predict Prostate Cancer Presence and Eventual Biochemical Recurrence, Cancers 15 (2023) 4437–4437. https://doi.org/10.3390/cancers15184437
Article PubMed PubMed Central Google Scholar
Q.-Z. Zhong, L.-H. Long, A. Liu, C.-M. Li, X. Xiu, X.-Y. Hou, Q.-H. Wu, H. Gao, Y.-G. Xu, T. Zhao, D. Wang, H.-L. Lin, X.-Y. Sha, W.-H. Wang, M. Chen, G.-F. Li, Radiomics of Multiparametric MRI to Predict Biochemical Recurrence of Localized Prostate Cancer after Radiation Therapy, Frontiers in Oncology 10 (2020). https://doi.org/10.3389/fonc.2020.00731
X. Zhu, Z. Liu, J. He, Z. Li, Y. Huang, J. Lu, MRI-Derived Radiomics Model to Predict the Biochemical Recurrence of Prostate Cancer following Seed Brachytherapy, Archivos Españoles De Urología 76 (2023) 264. https://doi.org/10.56434/j.arch.esp.urol.20237604.30
H. Wang, K. Wang, Y. Zhang, Y. Chen, X. Zhang, X. Wang, Deep learning-based Radiomics Model from Pretreatment ADC to Predict Biochemical Recurrence in Advanced Prostate Cancer, Frontiers in Oncology 14 (2024). https://doi.org/10.3389/fonc.2024.1342104
C. Hu, X. Qiao, R. Huang, C. Hu, J. Bao, X. Wang, Development and Validation of a Multimodality Model Based on WholeSlide Imaging and Biparametric MRI for Predicting Postoperative Biochemical Recurrence in Prostate Cancer, Radiology: Imaging Cancer 6 (2024) e230143. https://doi.org/10.1148/rycan.230143
X.-H. Wu, Z.-B. Ke, Z.-J. Chen, W.-Q. Liu, Y.-T. Xue, S.-H. Chen, D.-N. Chen, Q.-S. Zheng, X.-Y. Xue, Y. Wei, N. Xu, Periprostatic Fat Magnetic Resonance Imaging Based Radiomics Nomogram for Predicting Biochemical recurrence-free Survival in Patients with non-metastatic Prostate Cancer after Radical Prostatectomy, BMC Cancer 24 (2024) 1459. https://doi.org/10.1186/s12885-024-13207-4
Article CAS PubMed PubMed Central Google Scholar
M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, L. Shamseer, J.M. Tetzlaff, E.A. Akl, S.E. Brennan, R. Chou, J. Glanville, J.M. Grimshaw, A. Hróbjartsson, M.M. Lalu, T. Li, E.W. Loder, E. Mayo-Wilson, S. McDonald, L.A. McGuinness, L.A. Stewart, J. Thomas, A.C. Tricco, V.A. Welch, P. Whiting, D. Moher, The PRISMA 2020 statement: an Updated Guideline for Reporting Systematic Reviews, British Medical Journal 372 (2021). https://doi.org/10.1136/bmj.n71
P.F. Whiting, QUADAS-2: a Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies, Annals of Internal Medicine 155 (2011) 529. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
B. Kocak, Tugba Akinci D’Antonoli, N. Mercaldo, A. Alberich-Bayarri, B. Baessler, I. Ambrosini, A.E. Andreychenko, S. Bakas, Keno Bressem, I. Buvat, R. Cannella, Luca Alessandro Cappellini, Armando Ugo Cavallo, L.L. Chepelev, L. Chi, Aydin Demircioglu, N.M. deSouza, M. Dietzel, Salvatore Claudio Fanni, A. Fedorov, L.S. Fournier, V. Giannini, Rossano Girometti, Georgios Kalarakis, B.S. Kelly, M.E. Klontzas, D.-M. Koh, E. Kotter, Ho Yun Lee, M. Maas, L. Marti-Bonmati, Henning Müller, N. Obuchowski, F. Orlhac, N. Papanikolaou, E. Petrash, E. Pfaehler, D. Pinto, A. Ponsiglione, S. Sabater, F. Sardanelli, Philipp Seeböck, N.M. Sijtsema, A. Stanzione, A. Traverso, L. Ugga, M. Vallières, van Dijk, van Griethuysen, van Hamersvelt, Peter van Ooijen, Federica Vernuccio, A. Wang, S. Williams, J. Witowski, Z. Zhang, A. Zwanenburg, R. Cuocolo, METhodological RadiomICs Score (METRICS): a Quality Scoring Tool for Radiomics Research Endorsed by EuSoMII, Insights into Imaging 15 (2024). https://doi.org/10.1186/s13244-023-01572-w
J.P.T. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman, Measuring Inconsistency in meta-analyses, BMJ 327 (2003) 557–560. https://doi.org/10.1136/bmj.327.7414.557
Article PubMed PubMed Central Google Scholar
J.J. Deeks, P. Macaskill, L. Irwig, The Performance of Tests of Publication Bias and Other Sample Size Effects in Systematic Reviews of Diagnostic Test Accuracy Was Assessed, Journal of Clinical Epidemiology 58 (2005) 882–893. https://doi.org/10.1016/j.jclinepi.2005.01.016
N.P. Nanekaran, T.H. Felefly, N. Schieda, S.C. Morgan, R. Mittal, E. Ukwatta, Prediction of Prostate Cancer Recurrence after Radiotherapy Using a Fused Machine Learning approach: Utilizing Radiomics from Pretreatment T2W MRI Images with Clinical and Pathological Information, Biomedical Physics & Engineering Express 10 (2024) 065035. https://doi.org/10.1088/2057-1976/ad8201
H. Wang, K. Wang, S. Ma, G. Gao, X. Wang, Investigation of Radiomics Models for Predicting Biochemical Recurrence of Advanced Prostate Cancer on Pretreatment MR ADC Maps Based on Automatic Image Segmentation, Journal of Applied Clinical Medical Physics 25 (2023) e14244. https://doi.org/10.1002/acm2.14244
Article PubMed PubMed Central Google Scholar
A. Dutta, J. Chan, A. Haworth, D.J. Dubowitz, A. Kneebone, H.M. Reynolds, Robustness of Magnetic Resonance Imaging and Positron Emission Tomography Radiomic Features in Prostate cancer: Impact on Recurrence Prediction after Radiation Therapy, Physics and Imaging in Radiation Oncology 29 (2023) 100530–100530. https://doi.org/10.1016/j.phro.2023.100530
Article PubMed PubMed Central Google Scholar
L.M. Huynh, B. Bonebrake, J. Tran, J.T. Marasco, T.E. Ahlering, S. Wang, M.J. Baine, Multi-Institutional Development and Validation of a Radiomic Model to Predict Prostate Cancer Recurrence following Radical Prostatectomy, Journal of Clinical Medicine 12 (2023) 7322–7322. https://doi.org/10.3390/jcm12237322
Article PubMed PubMed Central Google Scholar
Y. Hou, K.-W. Jiang, L.-L. Wang, R. Zhi, M.-L. Bao, Q. Li, J. Zhang, J.-R. Qu, F.-P. Zhu, Y.-D. Zhang, Biopsy-free AI-aided precision MRI assessment in prediction of prostate cancer biochemical recurrence, British Journal of Cancer 129 (2023) 1625–1633. https://doi.org/10.1038/s41416-023-02441-5
Article CAS PubMed PubMed Central Google Scholar
Á.S. Iglesias, V.M. Macías, A.P. Peris, Almudena Fuster-Matanzo, A.N. Infante, R.M. Soria, Fuensanta Bellvís Bataller, M.D. Pomar, C.C. Meléndez, R.Y. Huertas, C.F. Albiach, Prostate Region-Wise Imaging Biomarker Profiles for Risk Stratification and Biochemical Recurrence Prediction, Cancers 15 (2023) 4163–4163. https://doi.org/10.3390/cancers15164163
Rakesh Shiradkar, S. Ghose, Amr Mahran, L. Li, I. Hubbard, P. Fu, Sree Harsha Tirumani, L. Ponsky, Andrei Purysko, Anant Madabhushi, Prostate Surface Distension and Tumor Texture Descriptors from Pre-Treatment MRI Are Associated with Biochemical Recurrence following Radical Prostatectomy: Preliminary Findings, Frontiers in Oncology 12 (2022). https://doi.org/10.3389/fonc.2022.841801
H.W. Lee, E. Kim, Inye Na, C.K. Kim, S.I. Seo, H. Park, Novel Multiparametric Magnetic Resonance Imaging-Based Deep Learning and Clinical Parameter Integration for the Prediction of Long-Term Biochemical Recurrence-Free Survival in Prostate Cancer after Radical Prostatectomy, Cancers 15 (2023) 3416–3416. https://doi.org/10.3390/cancers15133416
Article PubMed PubMed Central Google Scholar
P. An, Y. Lin, Y. Hu, P. Qin, Y. Ye, W. Gu, X. Li, P. Song, G. Feng, Predicting Model of Biochemical Recurrence of Prostate Carcinoma (PCa-BCR) Using MR Perfusion-Weighted Imaging-Based Radiomics, Technology in Cancer Research & Treatment 22 (2023) 153303382311667–153303382311667. https://doi.org/10.1177/15330338231166766
Y. Ji, J. Bao, X. Qiao, C. Cao, C. Hu, X. Wang, Predictive Value of MRI-based clinical-radiomic Model for Biochemical Recurrence after Radical Prostatectomy, Chinese Journal of Radiology 57 (2023) 1200–1207. https://doi.org/10.3760/cma.j.cn112149-20230620-00429
Comments (0)