Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15:276–83. https://doi.org/10.1016/j.jtos.2017.05.008.
Boboridis KG, Messmer EM, Benítez-Del-Castillo J, et al. Patient-reported burden and overall impact of dry eye disease across eight European countries: a cross-sectional web-based survey. BMJ Open. 2023;13:e067007. https://doi.org/10.1136/bmjopen-2022-067007.
Article PubMed PubMed Central Google Scholar
Sullivan BD, Whitmer D, Nichols KK, et al. An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci. 2010;51:6125–30. https://doi.org/10.1167/iovs.10-5390.
González-Cavada J, Martin R, Piñero DP. Clinical characterization of asymptomatic or minimally symptomatic young patients showing signs compatible with dry eye: a pilot study. Eye Contact Lens. 2015;41:171–6. https://doi.org/10.1097/ICL.0000000000000103.
Baudouin C, Aragona P, Messmer EM, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013;11:246–58. https://doi.org/10.1016/j.jtos.2013.07.003.
Baudouin C, Messmer EM, Aragona P, et al. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol. 2016;100:300–6. https://doi.org/10.1136/bjophthalmol-2015-307415.
Baudouin C, Rolando M, Benitez Del Castillo JM, et al. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res. 2019;71:68–87. https://doi.org/10.1016/j.preteyeres.2018.11.007.
Article CAS PubMed Google Scholar
Yamaguchi T. Inflammatory response in dry eye. Invest Ophthalmol Vis Sci. 2018;59:DES192–9. https://doi.org/10.1167/iovs.17-23651.
Article CAS PubMed Google Scholar
Navel V, Sapin V, Henrioux F, et al. Oxidative and antioxidative stress markers in dry eye disease: a systematic review and meta-analysis. Acta Ophthalmol. 2022;100:45–57. https://doi.org/10.1111/aos.14892.
Article CAS PubMed Google Scholar
Dogru M, Kojima T, Simsek C, Tsubota K. Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Invest Ophthalmol Vis Sci. 2018;59:DES163–8. https://doi.org/10.1167/iovs.17-23402.
Article CAS PubMed Google Scholar
Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018;96:e412–20. https://doi.org/10.1111/aos.13526.
Article CAS PubMed Google Scholar
Baiula M, Spampinato S. Experimental pharmacotherapy for dry eye disease: a review. J Exp Pharmacol. 2021;13:345–58. https://doi.org/10.2147/JEP.S237487.
Article PubMed PubMed Central Google Scholar
Fayez AM, Zakaria S, Moustafa D. Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats. Biomed Pharmacother. 2018;105:428–33. https://doi.org/10.1016/j.biopha.2018.05.145.
Article CAS PubMed Google Scholar
Miller KL, Walt JG, Mink DR, et al. Minimal clinically important difference for the ocular surface disease index. Arch Ophthalmol. 2010;128:94–101. https://doi.org/10.1001/archophthalmol.2009.356.
Grubbs JR, Tolleson-Rinehart S, Huynh K, Davis RM. A review of quality of life measures in dry eye questionnaires. Cornea. 2014;33:215–8. https://doi.org/10.1097/ICO.0000000000000038.
Article PubMed PubMed Central Google Scholar
Efron N, Morgan PB, Jagpal R. Validation of computer morphs for grading contact lens complications. Ophthalmic Physiol Opt. 2002;22:341–9. https://doi.org/10.1046/j.1475-1313.2002.00049.x.
Bron AJ, Evans VE, Smith JA. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea. 2003;22:640–50. https://doi.org/10.1097/00003226-200310000-00008.
Yasar E, Kemeriz F, Gurlevik U. Evaluation of dry eye disase and meibomian gland dysfunction with meibography in seborrheic dermatitis. Cont Lens Anterior Eye. 2019;42:675–8. https://doi.org/10.1016/j.clae.2019.03.005.
Chen Y, Mehta G, Vasiliou V. Antioxidant defenses in the ocular surface. Ocul Surf. 2009;7:176–85. https://doi.org/10.1016/s1542-0124(12)70185-4.
Article PubMed PubMed Central Google Scholar
Corrales RM, Galarreta D, Herreras J, et al. Antioxidant enzyme mRNA expression in conjunctival epithelium of healthy human subjects. Can J Ophthalmol. 2011;46:35–9. https://doi.org/10.3129/i10-062.
Kojima T, Wakamatsu TH, Dogru M, et al. Age-related dysfunction of the lacrimal gland and oxidative stress: evidence from the Cu,Zn-superoxide dismutase-1 (Sod1) knockout mice. Am J Pathol. 2012;180:1879–96. https://doi.org/10.1016/j.ajpath.2012.01.019.
Article CAS PubMed Google Scholar
Cejková J, Ardan T, Simonová Z, et al. Decreased expression of antioxidant enzymes in the conjunctival epithelium of dry eye (Sjögren’s syndrome) and its possible contribution to the development of ocular surface oxidative injuries. Histol Histopathol. 2008;23:1477–83. https://doi.org/10.14670/HH-23.1477.
Li Z, Han Y, Ji Y, et al. The effect of a-Lipoic acid (ALA) on oxidative stress, inflammation, and apoptosis in high glucose–induced human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2023;261:735–48. https://doi.org/10.1007/s00417-022-05784-6.
Article CAS PubMed Google Scholar
Rochette L, Ghibu S, Richard C, et al. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013;57:114–25. https://doi.org/10.1002/mnfr.201200608.
Article CAS PubMed Google Scholar
Roszkowska AM, Spinella R, Oliverio GW, et al. Effects of the topical use of the natural antioxidant alpha-lipoic acid on the ocular surface of diabetic patients with dry eye symptoms. Front Biosci (Landmark Ed). 2022;27:202. https://doi.org/10.31083/j.fbl2707202.
Article CAS PubMed Google Scholar
Kost OA, Beznos OV, Davydova NG, et al. Superoxide dismutase 1 nanozyme for treatment of eye inflammation. Oxid Med Cell Longev. 2016;2016:5194239. https://doi.org/10.1155/2016/5194239.
Ajith TA. Alpha-lipoic acid: a possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol. 2020;47:1883–90. https://doi.org/10.1111/1440-1681.13373.
Article CAS PubMed Google Scholar
Lee BM, Park SJ, Noh I, Kim C-H. The effects of the molecular weights of hyaluronic acid on the immune responses. Biomater Res. 2021;25:27. https://doi.org/10.1186/s40824-021-00228-4.
Article CAS PubMed PubMed Central Google Scholar
Altman R, Bedi A, Manjoo A, et al. Anti-inflammatory effects of intra-articular hyaluronic acid: a systematic review. Cartilage. 2019;10:43–52. https://doi.org/10.1177/1947603517749919.
Article CAS PubMed Google Scholar
Cyphert JM, Trempus CS, Garantziotis S. Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015;2015:563818. https://doi.org/10.1155/2015/563818.
Comments (0)