Management of Oxidative Stress and Inflammation in Patients with Symptomatic Dry Eye Disease Treated with a Preservative-Free Ophthalmic Emulsion Combining Alpha-Lipoic Acid and High Molecular Weight Sodium Hyaluronate

Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15:276–83. https://doi.org/10.1016/j.jtos.2017.05.008.

Article  PubMed  Google Scholar 

Boboridis KG, Messmer EM, Benítez-Del-Castillo J, et al. Patient-reported burden and overall impact of dry eye disease across eight European countries: a cross-sectional web-based survey. BMJ Open. 2023;13:e067007. https://doi.org/10.1136/bmjopen-2022-067007.

Article  PubMed  PubMed Central  Google Scholar 

Sullivan BD, Whitmer D, Nichols KK, et al. An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci. 2010;51:6125–30. https://doi.org/10.1167/iovs.10-5390.

Article  PubMed  Google Scholar 

González-Cavada J, Martin R, Piñero DP. Clinical characterization of asymptomatic or minimally symptomatic young patients showing signs compatible with dry eye: a pilot study. Eye Contact Lens. 2015;41:171–6. https://doi.org/10.1097/ICL.0000000000000103.

Article  PubMed  Google Scholar 

Baudouin C, Aragona P, Messmer EM, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013;11:246–58. https://doi.org/10.1016/j.jtos.2013.07.003.

Article  PubMed  Google Scholar 

Baudouin C, Messmer EM, Aragona P, et al. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol. 2016;100:300–6. https://doi.org/10.1136/bjophthalmol-2015-307415.

Article  PubMed  Google Scholar 

Baudouin C, Rolando M, Benitez Del Castillo JM, et al. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res. 2019;71:68–87. https://doi.org/10.1016/j.preteyeres.2018.11.007.

Article  CAS  PubMed  Google Scholar 

Yamaguchi T. Inflammatory response in dry eye. Invest Ophthalmol Vis Sci. 2018;59:DES192–9. https://doi.org/10.1167/iovs.17-23651.

Article  CAS  PubMed  Google Scholar 

Navel V, Sapin V, Henrioux F, et al. Oxidative and antioxidative stress markers in dry eye disease: a systematic review and meta-analysis. Acta Ophthalmol. 2022;100:45–57. https://doi.org/10.1111/aos.14892.

Article  CAS  PubMed  Google Scholar 

Dogru M, Kojima T, Simsek C, Tsubota K. Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Invest Ophthalmol Vis Sci. 2018;59:DES163–8. https://doi.org/10.1167/iovs.17-23402.

Article  CAS  PubMed  Google Scholar 

Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018;96:e412–20. https://doi.org/10.1111/aos.13526.

Article  CAS  PubMed  Google Scholar 

Baiula M, Spampinato S. Experimental pharmacotherapy for dry eye disease: a review. J Exp Pharmacol. 2021;13:345–58. https://doi.org/10.2147/JEP.S237487.

Article  PubMed  PubMed Central  Google Scholar 

Fayez AM, Zakaria S, Moustafa D. Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats. Biomed Pharmacother. 2018;105:428–33. https://doi.org/10.1016/j.biopha.2018.05.145.

Article  CAS  PubMed  Google Scholar 

Miller KL, Walt JG, Mink DR, et al. Minimal clinically important difference for the ocular surface disease index. Arch Ophthalmol. 2010;128:94–101. https://doi.org/10.1001/archophthalmol.2009.356.

Article  PubMed  Google Scholar 

Grubbs JR, Tolleson-Rinehart S, Huynh K, Davis RM. A review of quality of life measures in dry eye questionnaires. Cornea. 2014;33:215–8. https://doi.org/10.1097/ICO.0000000000000038.

Article  PubMed  PubMed Central  Google Scholar 

Efron N, Morgan PB, Jagpal R. Validation of computer morphs for grading contact lens complications. Ophthalmic Physiol Opt. 2002;22:341–9. https://doi.org/10.1046/j.1475-1313.2002.00049.x.

Article  PubMed  Google Scholar 

Bron AJ, Evans VE, Smith JA. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea. 2003;22:640–50. https://doi.org/10.1097/00003226-200310000-00008.

Article  PubMed  Google Scholar 

Yasar E, Kemeriz F, Gurlevik U. Evaluation of dry eye disase and meibomian gland dysfunction with meibography in seborrheic dermatitis. Cont Lens Anterior Eye. 2019;42:675–8. https://doi.org/10.1016/j.clae.2019.03.005.

Article  PubMed  Google Scholar 

Chen Y, Mehta G, Vasiliou V. Antioxidant defenses in the ocular surface. Ocul Surf. 2009;7:176–85. https://doi.org/10.1016/s1542-0124(12)70185-4.

Article  PubMed  PubMed Central  Google Scholar 

Corrales RM, Galarreta D, Herreras J, et al. Antioxidant enzyme mRNA expression in conjunctival epithelium of healthy human subjects. Can J Ophthalmol. 2011;46:35–9. https://doi.org/10.3129/i10-062.

Article  PubMed  Google Scholar 

Kojima T, Wakamatsu TH, Dogru M, et al. Age-related dysfunction of the lacrimal gland and oxidative stress: evidence from the Cu,Zn-superoxide dismutase-1 (Sod1) knockout mice. Am J Pathol. 2012;180:1879–96. https://doi.org/10.1016/j.ajpath.2012.01.019.

Article  CAS  PubMed  Google Scholar 

Cejková J, Ardan T, Simonová Z, et al. Decreased expression of antioxidant enzymes in the conjunctival epithelium of dry eye (Sjögren’s syndrome) and its possible contribution to the development of ocular surface oxidative injuries. Histol Histopathol. 2008;23:1477–83. https://doi.org/10.14670/HH-23.1477.

Article  PubMed  Google Scholar 

Li Z, Han Y, Ji Y, et al. The effect of a-Lipoic acid (ALA) on oxidative stress, inflammation, and apoptosis in high glucose–induced human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2023;261:735–48. https://doi.org/10.1007/s00417-022-05784-6.

Article  CAS  PubMed  Google Scholar 

Rochette L, Ghibu S, Richard C, et al. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013;57:114–25. https://doi.org/10.1002/mnfr.201200608.

Article  CAS  PubMed  Google Scholar 

Roszkowska AM, Spinella R, Oliverio GW, et al. Effects of the topical use of the natural antioxidant alpha-lipoic acid on the ocular surface of diabetic patients with dry eye symptoms. Front Biosci (Landmark Ed). 2022;27:202. https://doi.org/10.31083/j.fbl2707202.

Article  CAS  PubMed  Google Scholar 

Kost OA, Beznos OV, Davydova NG, et al. Superoxide dismutase 1 nanozyme for treatment of eye inflammation. Oxid Med Cell Longev. 2016;2016:5194239. https://doi.org/10.1155/2016/5194239.

Article  CAS  Google Scholar 

Ajith TA. Alpha-lipoic acid: a possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol. 2020;47:1883–90. https://doi.org/10.1111/1440-1681.13373.

Article  CAS  PubMed  Google Scholar 

Lee BM, Park SJ, Noh I, Kim C-H. The effects of the molecular weights of hyaluronic acid on the immune responses. Biomater Res. 2021;25:27. https://doi.org/10.1186/s40824-021-00228-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altman R, Bedi A, Manjoo A, et al. Anti-inflammatory effects of intra-articular hyaluronic acid: a systematic review. Cartilage. 2019;10:43–52. https://doi.org/10.1177/1947603517749919.

Article  CAS  PubMed  Google Scholar 

Cyphert JM, Trempus CS, Garantziotis S. Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015;2015:563818. https://doi.org/10.1155/2015/563818.

Comments (0)

No login
gif