Direct in situ Measurement of Electrocatalytic Carbon Dioxide Reduction Properties using Scanning Electrochemical Microscopy

Li MH, Wang HF, Luo W, Sherrell PC, Chen J, Yang JP. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater. 2020;32(34):2001848.

Article  CAS  Google Scholar 

Obama B. The irreversible momentum of clean energy. Science. 2017;355(6321):126–9.

Article  CAS  PubMed  Google Scholar 

Olah GA, Prakash GK, Goeppert A. Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc. 2011;133(33):12881–98.

Article  CAS  PubMed  Google Scholar 

Luna PD, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science. 2019;364(6438):3506.

Article  Google Scholar 

Qiao JL, Liu YY, Hong F, Zhang JJ. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014;43(2):631–75.

Article  CAS  PubMed  Google Scholar 

Wang HR, Aslam MK, Nie ZH, Yang K, Li XR, Chen S, Li Q, Chao DL, Duan JJ. Dual-anion regulation for reversible and energetic aqueous Zn–CO2 batteries. Small Methods. 2023. https://doi.org/10.1002/smtd.202300867.

Article  PubMed  Google Scholar 

Lin L, He XY, Xie SJ, Wang Y. Electrocatalytic CO2 conversion toward large-scale deployment. Chin J Catal. 2023;53:1–7.

Article  CAS  Google Scholar 

Zhang F, Co AC. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew Chem Int Ed. 2020;132(4):1691–8.

Article  Google Scholar 

Hori Y, Kikuchi K, Murata A, Suzuki S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett. 1986. https://doi.org/10.1246/cl.1986.897.

Article  Google Scholar 

Peng LW, Zhang Y, He RN, Xu NN, Qiao JL. Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction. Acta Phys Chim Sin. 2023;39(12):2302037.

Article  Google Scholar 

Li X, Chen Y, Zhan X, Xu Y, Hao L, Xu L, Li X, Umer M, Tan X, Han B, Robertson AW, Sun Z. Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper. The Innov Mater. 2023;1(1):100014.

Article  Google Scholar 

Gattrell M, Gupta N, Co A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem. 2006;594(1):1–19.

Article  CAS  Google Scholar 

Singh MR, Kwon Y, Lum YW, Ager JW III, Bell AT. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J Am Chem Soc. 2016;138(39):13006–12.

Article  CAS  PubMed  Google Scholar 

Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018;3(7):1545–56.

Article  CAS  Google Scholar 

Nitopi S, Bertheussen E, Scott SB, Liu XY, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Norskov JK, Jaramillo TF, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610–72.

Article  CAS  PubMed  Google Scholar 

Zhao X, Luo B, Long R, Wang C, Xiong Y. Composition-dependent activity of Cu–Pt alloy nanocubes for electrocatalytic CO2 reduction. J Mater Chem A. 2015;3(8):4134–8.

Article  CAS  Google Scholar 

Ehlinger VM, Lee DU, Lin TY, Duoss EB, Baker SE, Jaramillo TF, Hahn C. Modeling planar electrodes and zero-gap membrane electrode assemblies for CO2 electrolysis. Chem Electro Chem. 2024;11(7):202300566.

Google Scholar 

Ohashi K, Nagita K, Yamamoto H, Nakanishi S, Kamiya K. C−C coupling in CO2 electroreduction on single Cu-modified covalent triazine frameworks: a static and dynamic density functional theory study. ChemElectroChem. 2024;11(6):202300693.

Article  Google Scholar 

Hua W, Sun H, Lin L, Mu QQ, Yang BY, Su YH, Wu HR, Lyu FL, Zhong J, Deng Z, Peng Y. A hierarchical single-atom Ni-N3-C catalyst for electrochemical CO2 reduction to CO with near-unity faradaic efficiency in a broad potential range. Chem Eng J. 2022;446(4):137296.

Article  CAS  Google Scholar 

Wang M, Lin L, Zheng ZY, Jiao ZY, Hua W, Wang GW, Ke XX, Lian YB, Lyu FL, Zhong J, Deng Z, Peng Y. Hydrophobized electrospun nanofibers of hierarchical porosity as the integral gas diffusion electrode for full-pH CO2 electroreduction in membrane electrode assemblies. Energy Environ Sci. 2023;16(10):4423–31.

Article  CAS  Google Scholar 

Cai Y, Fu J, Zhou Y, Chang YC, Min QH, Zhu JJ, Lin YH, Zhu WL. Insights on forming N, O-coordinated Cu single atom catalysts for electrochemical reduction CO2 to methane. Nat Commun. 2021;12:586.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cornut R, Bhasin A, Lhenry S, Etienne M, Lefrou C. Accurate and simplified consideration of the probe geometrical defaults in scanning electrochemical microscopy: Theoretical and experimental investigations. Anal Chem. 2011;83(24):9669–75.

Article  CAS  PubMed  Google Scholar 

Gu J, Hsu CS, Bai L, Chen HM, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science. 2019;364(6445):1091–4.

Article  CAS  PubMed  Google Scholar 

Hua W, Liu TT, Zheng ZY, Yuan HH, Xiao L, Feng K, Hui JS, Deng Z, Ma MT, Cheng J, Song DQ, Lyu FL, Zhong J, Peng Y. Pulse electrolysis turns on CO2 methanation through N-confused cupric porphyrin. Angew Chem Int Ed. 2024;63(12):e202315922.

Article  CAS  Google Scholar 

Bian L, Zhang ZY, Tian H, Tian NN, Ma Z, Wang ZL. Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4. Chin J Catal. 2023;54:199–211.

Article  CAS  Google Scholar 

Chen H, Yang K, Shao T, Liu D, Feng H, Chen S, Ortiz-Ledón CA, Duan JJ, Li Q. Augmented CO2 utilization for acidic industrial-level CO2 electroreduction to near-unity CO. Electrochim Acta. 2023;469:143249.

Article  CAS  Google Scholar 

Chen XY, Chen JF, Alghoraib NM, Henckel DA, Zhang RX, Nwabara UO, Madsen KE, Kenis PJA, Zimmerman SC, Gewirth AA. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat Catal. 2020;4:20–7.

Article  Google Scholar 

Xie Y, Ou PF, Wang X, Xu ZY, Li YC, Wang ZY, Huang JE, Wicks J, McCallum C, Wang N, Wang YH, Chen TX, Sinton D, Yu JC, Wang Y, Sargent EH. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat Catal. 2022;5:564–70.

Article  CAS  Google Scholar 

Zhu Z, Duan JJ, Chen S. Metal-organic framework (MOF)-based clean energy conversion: Recent advances in unlocking its underlying mechanisms. Small. 2023;20(20):2309119.

Article  Google Scholar 

Qin HG, Du YF, Bai YY, Li FZ, Yue X, Wang H, Peng JZ, Gu J. Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte. Nat Commun. 2023;14:5640.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma W, Hu KK, Chen QJ, Zhou M, Mirkin MV, Bard AJ. Electrochemical size measurement and characterization of electrodeposited platinum nanoparticles at nanometer resolution with scanning electrochemical microscopy. Nano Lett. 2017;17(7):4354–8.

Article  CAS  PubMed  Google Scholar 

Hui JS, Schorr NB, Pakhira S, Qu ZH, Mendoza-Cortes JL, Rodriguez-Lopez J. Achieving fast and efficient K+ intercalation on ultrathin graphene electrodes modified by a Li+ based solid-electrolyte interphase. J Am Chem Soc. 2018;140(42):13599–603.

Article  CAS  PubMed  Google Scholar 

Hui JS, Burgess M, Zhang JR, Rodriguez-Lopez J. Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid−electrolyte interphase evolution. ACS Nano. 2016;10(4):4248–57.

Article  CAS  PubMed  Google Scholar 

Hui JS, Zhou X, Bhargava R, Chinderle AJ, Zhang JR, Rodríguez-López J. Kinetic modulation of outer-sphere electron transfer reactions on graphene electrode with a sub-surface metal substrate. Electrochim Acta. 2016;211:1016–23.

Article  CAS  Google Scholar 

Comments (0)

No login
gif