Ge S, Wang Y, Song Q, Chen L, Zhang Y, Hu D. Determination of nitenpyram dissipation and residue in kiwifruit by LC-MS/MS. Food Addit Contam A. 2020;37(6):955–62.
Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere. 2018;192:59–65.
Article CAS PubMed Google Scholar
Dong X, Jiang D, Liu Q, Han E, Zhang X, Guan X, Wang K, Qiu B. Enhanced amperometric sensing for direct detection of nitenpyram via synergistic effect of copper nanoparticles and nitrogen-doped graphene. J Electroanal Chem. 2014;734:25–30.
Harrop TW, Denecke S, Yang YT, Chan J, Daborn PJ, Perry T, Batterham P. Evidence for activation of nitenpyram by a mitochondrial cytochrome P450 in Drosophila melanogaster. Pest Manag Sci. 2018;74(7):1616–22.
Article CAS PubMed Google Scholar
Liu J, Xiong WH, Ye LY, Zhang WS, Yang H. Developing a novel nanoscale porphyrinic metal–organic framework: a bifunctional platform with sensitive fluorescent detection and elimination of nitenpyram in agricultural environment. J Agric Food Chem. 2020;68(20):5572–8.
Article CAS PubMed Google Scholar
Wang Q, Liu Y, Bai Y, Yao S, Wei Z, Zhang M, Wang LM, Wang L. Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram. Anal Chim Acta. 2019;1049:170–8.
Article CAS PubMed Google Scholar
Leboffe L, di Masi A, Trezza V, Pasquadibisceglie A, Macari G, Polticelli F, Ascenzi P. Neonicotinoid trapping by the FA1 site of human serum albumin. IUBMB Life. 2020;72(4):716–23.
Article CAS PubMed Google Scholar
Ai J, Wang X, Zhang Y, Hu H, Zhou H, Duan Y, Wang D, Wang H, Du H, Yang Y. A sensitive electrochemical sensor for nitenpyram detection based on CeO2/MWCNTs nanocomposite. Appl Phys A. 2022;128(9):831.
Pan X, Wang Z, Chen C, Li H, Li X, Zhang Q, Wang X, Zhang Y. Research on the distribution of neonicotinoid and fipronil pollution in the Yangtze River by high-performance liquid chromatography. Anal Methods. 2020;12(46):5581–90.
Article CAS PubMed Google Scholar
Li X, Chen J, He X, Wang Z, Wu D, Zheng X, Zheng L, Wang B. Simultaneous determination of neonicotinoids and fipronil and its metabolites in environmental water from coastal bay using disk-based solid-phase extraction and high-performance liquid chromatography–tandem mass spectrometry. Chemosphere. 2019;234:224–31.
Article CAS PubMed Google Scholar
Carbonell-Rozas L, Lara FJ, del Olmo IM, García-Campaña AM. Capillary liquid chromatography as an effective method for the determination of seven neonicotinoid residues in honey samples. J Sep Sci. 2020;43(20):3847–55.
Article CAS PubMed Google Scholar
Carbonell-Rozas L, Lara FJ, del Olmo IM, García-Campaña AM. A novel approach based on capillary liquid chromatography for the simultaneous determination of neonicotinoid residues in cereal samples. Microchem J. 2021;161:105756.
Hirakawa Y, Yamasaki T, Harada A, Iwasa S, Narita H, Miyake S. Development of an immunosensor based on surface plasmon resonance for simultaneous residue analysis of three pesticides boscalid, clothianidin, and nitenpyram in vegetables. Anal Sci. 2018;34(5):533–9.
Article CAS PubMed Google Scholar
Tu M, Zhang W, Zhu Y, Ma W, Li X, Zhou S, Li H, Li X. Accurate quantification of pure thiacloprid with mass balance and quantitative H-NMR. J Anal Test. 2024;8(1):1–8.
Wang ZJ, Li Q, Tan LL, Liu CG, Shang L. Metal–organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J Anal Test. 2022;6(2):163–77.
Article PubMed PubMed Central Google Scholar
Wang W, Yang F, Yang Y, Wang YY, Liu B. Rational synthesis of a stable rod MOF for ultrasensitive detection of nitenpyram and nitrofurazone in natural water systems. J Agric Food Chem. 2022;70(50):15682–92.
Article CAS PubMed Google Scholar
Jimenez-Lopez J, Ortega-Barrales P, Ruiz-Medina A. A photochemically induced fluorescence based flow-through optosensor for screening of nitenpyram residues in cruciferous vegetables. Food Addit Contam A. 2018;35(5):941–9.
Jimenez-Lopez J, Llorent-Martinez EJ, Ortega-Barrales P, Ruiz-Medina A. Sensitive photochemically induced fluorescence sensor for the determination of nitenpyram and pyraclostrobin in grapes and wines. Food Anal Methods. 2019;12(5):1152–9.
Li AJ, Chu QQ, Zhou HF, Yang ZP, Liu B, Zhang JW. Effective nitenpyram detection in a dual-walled nitrogen-rich In(III)/Tb(III)-organic framework. Inorg Chem Front. 2021;8(9):2341–8.
Muhammad N, Zhang Y, Li WX, Zhao YG, Ali A, Subhani Q, Mahmud T, Liu J, Cui H, Zhu Y. Determination of nitenpyram and 6-chloronicotinic acid in environmental samples by ion chromatography coupled with online photochemically induced fluorescence detector. J Sep Sci. 2018;41(22):4096–104.
Article CAS PubMed Google Scholar
Majeed S, Junaid HM, Waseem MT, Mahmood T, Farooq U, Shahzad SA. Receptor free fluorescent and colorimetric sensors for solution and vapor phase detection of hazardous pollutant nitrobenzene; a new structural approach to design AIEE active and piezofluorochromic sensors. J Photochem Photobiol A Chem. 2022;431:114022.
Tahir Waseem M, Muhammad Junaid H, Gul H, Ali Khan Z, Yu C, Anjum SS. Fluorene based fluorescent and colorimetric sensors for ultrasensitive detection of nitroaromatics in aqueous medium. J Photochem Photobiol A Chem. 2022;425:113660.
Swager TM. The molecular wire approach to sensory signal amplification. Acc Chem Res. 1998;31(5):201–7.
Rochat S, Swager TM. Conjugated amplifying polymers for optical sensing applications. ACS Appl Mater Interfaces. 2013;5(11):4488–502.
Article CAS PubMed Google Scholar
Tian Y, Xin FY, Zhang XL. Triphenylamines-substituted conjugated polymer as a turn-on fluorescent probe for detecting Hg2+. Chin J Anal Lab. 2022;41(2):166–70.
Chen S, Sun T, Xie Z, Dong D, Zhang N. A fluorescent sensor for intracellular Zn2+ based on cylindrical molecular brushes of poly(2-oxazoline) through ion-induced emission. Polym Chem. 2020;11(41):6650–7.
Cui W, Wang L, Xiang G, Zhou L, An X, Cao D. A colorimetric and fluorescence “turn-off” chemosensor for the detection of silver ion based on a conjugated polymer containing 2,3-di(pyridin-2-yl)quinoxaline. Sens Actuators B Chem. 2015;207:281–90.
Wang X, Zhao J, Guo C, Pei M, Zhang G. Simple hydrazide-based fluorescent sensors for highly sensitive and selective optical signaling of Cu2+ and Hg2+ in aqueous solution. Sens Actuators B Chem. 2014;193(3):157–65.
Wosnick JH, Mello CM, Swager TM. Synthesis and application of poly(phenylene ethynylene)s for bioconjugation: a conjugated polymer-based fluorogenic probe for proteases. J Am Chem Soc. 2005;127(10):3400–5.
Article CAS PubMed Google Scholar
Gaylord BS, Heeger AJ, Bazan GC. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J Am Chem Soc. 2003;125(4):896–900.
Article CAS PubMed Google Scholar
Zhu C, Liu L, Yang Q, Lv F, Wang S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev. 2012;112(8):4687–735.
Article CAS PubMed Google Scholar
Taniya OS, Khasanov AF, Sadieva LK, Santra S, Nikonov IL, Al-Ithawi WKA, Kovalev IS, Kopchuk DS, Zyryanov GV, Ranu BC. Polymers and polymer-based materials for the detection of (nitro-)explosives. Materials. 2023;16(18):6333.
Article CAS PubMed PubMed Central Google Scholar
Gong L, Zhang L, Shen R, Zhang L, Wang H, Fan LA. A novel conjugated polymer fluorescence probe for the detection of copper ions in aqueous media. Methods Appl Fluoresc. 2022;11(1):015001.
Comments (0)