A Novel Conjugated Fluorescent Probe and its Application to Nitenpyram Detection

Ge S, Wang Y, Song Q, Chen L, Zhang Y, Hu D. Determination of nitenpyram dissipation and residue in kiwifruit by LC-MS/MS. Food Addit Contam A. 2020;37(6):955–62.

Article  CAS  Google Scholar 

Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere. 2018;192:59–65.

Article  CAS  PubMed  Google Scholar 

Dong X, Jiang D, Liu Q, Han E, Zhang X, Guan X, Wang K, Qiu B. Enhanced amperometric sensing for direct detection of nitenpyram via synergistic effect of copper nanoparticles and nitrogen-doped graphene. J Electroanal Chem. 2014;734:25–30.

Article  CAS  Google Scholar 

Harrop TW, Denecke S, Yang YT, Chan J, Daborn PJ, Perry T, Batterham P. Evidence for activation of nitenpyram by a mitochondrial cytochrome P450 in Drosophila melanogaster. Pest Manag Sci. 2018;74(7):1616–22.

Article  CAS  PubMed  Google Scholar 

Liu J, Xiong WH, Ye LY, Zhang WS, Yang H. Developing a novel nanoscale porphyrinic metal–organic framework: a bifunctional platform with sensitive fluorescent detection and elimination of nitenpyram in agricultural environment. J Agric Food Chem. 2020;68(20):5572–8.

Article  CAS  PubMed  Google Scholar 

Wang Q, Liu Y, Bai Y, Yao S, Wei Z, Zhang M, Wang LM, Wang L. Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram. Anal Chim Acta. 2019;1049:170–8.

Article  CAS  PubMed  Google Scholar 

Leboffe L, di Masi A, Trezza V, Pasquadibisceglie A, Macari G, Polticelli F, Ascenzi P. Neonicotinoid trapping by the FA1 site of human serum albumin. IUBMB Life. 2020;72(4):716–23.

Article  CAS  PubMed  Google Scholar 

Ai J, Wang X, Zhang Y, Hu H, Zhou H, Duan Y, Wang D, Wang H, Du H, Yang Y. A sensitive electrochemical sensor for nitenpyram detection based on CeO2/MWCNTs nanocomposite. Appl Phys A. 2022;128(9):831.

Article  CAS  Google Scholar 

Pan X, Wang Z, Chen C, Li H, Li X, Zhang Q, Wang X, Zhang Y. Research on the distribution of neonicotinoid and fipronil pollution in the Yangtze River by high-performance liquid chromatography. Anal Methods. 2020;12(46):5581–90.

Article  CAS  PubMed  Google Scholar 

Li X, Chen J, He X, Wang Z, Wu D, Zheng X, Zheng L, Wang B. Simultaneous determination of neonicotinoids and fipronil and its metabolites in environmental water from coastal bay using disk-based solid-phase extraction and high-performance liquid chromatography–tandem mass spectrometry. Chemosphere. 2019;234:224–31.

Article  CAS  PubMed  Google Scholar 

Carbonell-Rozas L, Lara FJ, del Olmo IM, García-Campaña AM. Capillary liquid chromatography as an effective method for the determination of seven neonicotinoid residues in honey samples. J Sep Sci. 2020;43(20):3847–55.

Article  CAS  PubMed  Google Scholar 

Carbonell-Rozas L, Lara FJ, del Olmo IM, García-Campaña AM. A novel approach based on capillary liquid chromatography for the simultaneous determination of neonicotinoid residues in cereal samples. Microchem J. 2021;161:105756.

Article  CAS  Google Scholar 

Hirakawa Y, Yamasaki T, Harada A, Iwasa S, Narita H, Miyake S. Development of an immunosensor based on surface plasmon resonance for simultaneous residue analysis of three pesticides boscalid, clothianidin, and nitenpyram in vegetables. Anal Sci. 2018;34(5):533–9.

Article  CAS  PubMed  Google Scholar 

Tu M, Zhang W, Zhu Y, Ma W, Li X, Zhou S, Li H, Li X. Accurate quantification of pure thiacloprid with mass balance and quantitative H-NMR. J Anal Test. 2024;8(1):1–8.

Article  Google Scholar 

Wang ZJ, Li Q, Tan LL, Liu CG, Shang L. Metal–organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J Anal Test. 2022;6(2):163–77.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Yang F, Yang Y, Wang YY, Liu B. Rational synthesis of a stable rod MOF for ultrasensitive detection of nitenpyram and nitrofurazone in natural water systems. J Agric Food Chem. 2022;70(50):15682–92.

Article  CAS  PubMed  Google Scholar 

Jimenez-Lopez J, Ortega-Barrales P, Ruiz-Medina A. A photochemically induced fluorescence based flow-through optosensor for screening of nitenpyram residues in cruciferous vegetables. Food Addit Contam A. 2018;35(5):941–9.

Article  CAS  Google Scholar 

Jimenez-Lopez J, Llorent-Martinez EJ, Ortega-Barrales P, Ruiz-Medina A. Sensitive photochemically induced fluorescence sensor for the determination of nitenpyram and pyraclostrobin in grapes and wines. Food Anal Methods. 2019;12(5):1152–9.

Article  Google Scholar 

Li AJ, Chu QQ, Zhou HF, Yang ZP, Liu B, Zhang JW. Effective nitenpyram detection in a dual-walled nitrogen-rich In(III)/Tb(III)-organic framework. Inorg Chem Front. 2021;8(9):2341–8.

Article  CAS  Google Scholar 

Muhammad N, Zhang Y, Li WX, Zhao YG, Ali A, Subhani Q, Mahmud T, Liu J, Cui H, Zhu Y. Determination of nitenpyram and 6-chloronicotinic acid in environmental samples by ion chromatography coupled with online photochemically induced fluorescence detector. J Sep Sci. 2018;41(22):4096–104.

Article  CAS  PubMed  Google Scholar 

Majeed S, Junaid HM, Waseem MT, Mahmood T, Farooq U, Shahzad SA. Receptor free fluorescent and colorimetric sensors for solution and vapor phase detection of hazardous pollutant nitrobenzene; a new structural approach to design AIEE active and piezofluorochromic sensors. J Photochem Photobiol A Chem. 2022;431:114022.

Article  CAS  Google Scholar 

Tahir Waseem M, Muhammad Junaid H, Gul H, Ali Khan Z, Yu C, Anjum SS. Fluorene based fluorescent and colorimetric sensors for ultrasensitive detection of nitroaromatics in aqueous medium. J Photochem Photobiol A Chem. 2022;425:113660.

Article  CAS  Google Scholar 

Swager TM. The molecular wire approach to sensory signal amplification. Acc Chem Res. 1998;31(5):201–7.

Article  CAS  Google Scholar 

Rochat S, Swager TM. Conjugated amplifying polymers for optical sensing applications. ACS Appl Mater Interfaces. 2013;5(11):4488–502.

Article  CAS  PubMed  Google Scholar 

Tian Y, Xin FY, Zhang XL. Triphenylamines-substituted conjugated polymer as a turn-on fluorescent probe for detecting Hg2+. Chin J Anal Lab. 2022;41(2):166–70.

CAS  Google Scholar 

Chen S, Sun T, Xie Z, Dong D, Zhang N. A fluorescent sensor for intracellular Zn2+ based on cylindrical molecular brushes of poly(2-oxazoline) through ion-induced emission. Polym Chem. 2020;11(41):6650–7.

Article  CAS  Google Scholar 

Cui W, Wang L, Xiang G, Zhou L, An X, Cao D. A colorimetric and fluorescence “turn-off” chemosensor for the detection of silver ion based on a conjugated polymer containing 2,3-di(pyridin-2-yl)quinoxaline. Sens Actuators B Chem. 2015;207:281–90.

Article  CAS  Google Scholar 

Wang X, Zhao J, Guo C, Pei M, Zhang G. Simple hydrazide-based fluorescent sensors for highly sensitive and selective optical signaling of Cu2+ and Hg2+ in aqueous solution. Sens Actuators B Chem. 2014;193(3):157–65.

CAS  Google Scholar 

Wosnick JH, Mello CM, Swager TM. Synthesis and application of poly(phenylene ethynylene)s for bioconjugation: a conjugated polymer-based fluorogenic probe for proteases. J Am Chem Soc. 2005;127(10):3400–5.

Article  CAS  PubMed  Google Scholar 

Gaylord BS, Heeger AJ, Bazan GC. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J Am Chem Soc. 2003;125(4):896–900.

Article  CAS  PubMed  Google Scholar 

Zhu C, Liu L, Yang Q, Lv F, Wang S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev. 2012;112(8):4687–735.

Article  CAS  PubMed  Google Scholar 

Taniya OS, Khasanov AF, Sadieva LK, Santra S, Nikonov IL, Al-Ithawi WKA, Kovalev IS, Kopchuk DS, Zyryanov GV, Ranu BC. Polymers and polymer-based materials for the detection of (nitro-)explosives. Materials. 2023;16(18):6333.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong L, Zhang L, Shen R, Zhang L, Wang H, Fan LA. A novel conjugated polymer fluorescence probe for the detection of copper ions in aqueous media. Methods Appl Fluoresc. 2022;11(1):015001.

Comments (0)

No login
gif