Construction of an “aptamer-target-peptide” Sandwich Electrochemical Biosensor for Ultrasensitive Assay of Amyloid-Beta Oligomers based on Bimetallic Covalent Organic Framework

Sun X, Chapin BM, Metola P, Collins B, Wang B, James TD, Anslyn EV. The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids. Nat Chem. 2019;11:768–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan CX, Dai JF, Yao YK, Fu W, Tian H, Zhu WH, Guo ZQ. Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice. Nat Protoc. 2023;18:1316–36.

Article  CAS  PubMed  Google Scholar 

Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 2009;461:916–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai Y, Shi D, Lan G, Chen L, Jiang Y, Zhou L, Guo T. Association of β-amyloid microglial activation cortical thickness and metabolism in older adults without dementia. Neurology. 2024;102(7):e209205.

Article  CAS  PubMed  Google Scholar 

Gremer L. Fibril structure of amyloid-β (1–42) by cryo-electron microscopy. Science. 2017;358:116–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent diagnostic probes in neurodegenerative diseases. Adv Mater. 2020;32:e2001945.

Article  PubMed  Google Scholar 

Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, Ryu JH, Yoon J. Preparation of a cyanine-based fluorescent probe for highly selective detection of glutathione and its use in living cells and tissues of mice. Nat Protoc. 2015;10(11):1742–54.

Article  CAS  PubMed  Google Scholar 

Biyani R, Hirata K, Oqmhula K, Yurtsever A, Hongo K, Maezono R, Takagi M, Fukuma T, Biyani M. Biophysical properties of the fibril structure of the toxic conformer of amyloid-β42: characterization by atomic force microscopy in liquid and molecular docking. Appl Mater Interfaces. 2023;15(23):27789–800.

Article  CAS  Google Scholar 

Izuo N, Kume T, Sato M, Murakami K, Irie K, Izumi Y, Akaike A. Toxicity in rat primary neurons through the cellular oxidative stress induced by the turn formation at positions 22 and 23 of Aβ42. ACS Chem Neurosci. 2012;3(9):674–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izuo N, Kasahara C, Murakami K, Kume T, Maeda M, Irie K, Yokote K, Shimizu TA. Toxic conformer of Aβ42 with a turn at 22–23 is a novel therapeutic target for Alzheimer’s disease. Sci Rep. 2017;7(1):11811.

Article  PubMed  PubMed Central  Google Scholar 

Sabu A, Huang YC, Sharmila R, Sun CY, Shen MY, Chiu HC. Magnetic stirring with iron oxide nanospinners accretes neurotoxic Aβ42 oligomers into phagocytic clearable plaques for Alzheimer’s disease treatment. Mater Today Bio. 2024;28:101213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basar A, Soner D, Burhan OG, Elif Y, Atakan A, Umit O, Munevver BC, Kaan Y, Isin DE, Bilge GT. Neurodegeneration: effects of calorie restriction on the brain sirtuin protein levels. Behavioural Brain Res. 2025;476:115258.

Article  Google Scholar 

Huang CJ, Ho SY, Wu SH, Wang YL, Dong GC. Exploring multi-faceted bioactivity of Aβ42 oligomers on diverse bio-substrates: implications for Alzheimer’s disease and cerebral amyloid angiopathy. J Taiwan Inst Chem Eng. 2024;163:105570.

Article  CAS  Google Scholar 

Altay DN, Yagar H, Ozcan HM. A new ITO-based Aβ42 biosensor for early detection of Alzheimer’s disease. Bioelectrochemistry. 2023;153:108501.

Article  CAS  PubMed  Google Scholar 

Grecco CF, Crevelin EJ, Tumas V, Hallak JE. Disposable pipette extraction followed by direct MS/MS analysis of beta amyloid peptides (Aβ38 Aβ40 and Aβ42) in cerebrospinal fluid samples. J Braz Chem Soc. 2025;36(1):e20240084.

Google Scholar 

Hou BL, Tian D, Liu J, Dong LZ, Li SL, Li DS, Lan YQ. A water-stable metal-organic framework for highly sensitive and selective sensing of Fe3+ ion. Inorg Chem. 2016;55(20):10580–6.

Article  CAS  PubMed  Google Scholar 

Fan Q, Wang J, Biazik JM, Geng S, Mazur F, Li Y, Ke PC, Chandrawati R. UiO-66-NH2 metal-organic framework for the detection of Alzheimer’s biomarker Aβ (1–42). ACS Appl Bio Mater. 2024;7(1):182–92.

Article  CAS  PubMed  Google Scholar 

Shen H, Liu K, Kong F, Ren M, Wang X, Wang S. Strategies for measuring concentrations and forms of amyloid-β peptides. Biosens Bioelectron. 2024;259:116405.

Article  CAS  PubMed  Google Scholar 

Zhang X, Hao N, Liu SC, Wei K, Ma CC, Pan JM, Feng S. Construction of phosphatase-like COF-OMe@Valine-CeO2 nanozymes for ultrasensitive electrochemical detection of organophosphorus pesticides. Sensor Actuat B-Chem. 2024;417:136068.

Article  CAS  Google Scholar 

Liu Y, Yan X, Xing Y, Zhao P, Zhu Y, Li L, Liu N, Zhang Z. Dispersed Au nanoparticles anchored on covalent organic frameworks/carbon nanotubes via self-reduction for electrochemical sensing of acetaminophen. ACS Appl Nano Mater. 2024;7(5):4980–8.

Article  CAS  Google Scholar 

Feng R, Wu J. Advances of electrochemical sensors based on covalent organic framework materials. Chin J Anal Lab. 2024;43(2):179–94.

CAS  Google Scholar 

Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W. Recent progress in covalent organic framework thin films: fabrications applications and perspectives. Chem Soc Rev. 2019;48(2):488–516.

Article  CAS  PubMed  Google Scholar 

Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The current status of MOF and COF applications. Angew Chem Int Ed. 2021;60(45):23975–4001.

Article  CAS  Google Scholar 

Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev. 2021;50(24):13498–558.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Wang, Liang HH, Xu MI, Wang LY, Xie Y, Song YH. Ratiometric electrochemical biosensing based on double-enzymes loaded on two dimensional dual-pore COFETTA-TPAL. Sensor Actuat B-Chem. 2019;298:126859.

Article  Google Scholar 

Seo JM, Noh HJ, Jeon JP, Kim H, Han GF, Kwak SK, Jeong HY, Wang L, Li F, Baek JB. Conductive and ultrastable covalent organic framework/carbon hybrid as an ideal electrocatalytic platform. J Am Chem Soc. 2022;144(43):19973–80.

Article  CAS  PubMed  Google Scholar 

Yao X, Guo C, Song C, Lu M, Zhang Y, Zhou J, Ding HM, Chen Y, Li SL, Lan YQ. In situ interweaved high sulfur loading Li-S cathode by catalytically active metalloporphyrin based organic polymer binders. Adv Mater. 2023;35(7):2208846.

Article  CAS  Google Scholar 

Shi Q, Zhao Y, Liu M, Shi F, Chen L, Xu X, Gao J, Zhao H, Lu F, Qin Y, Zhang Z, Lian M. Engineering platelet membrane-coated bimetallic MOFs as biodegradable Nanozymes for efficient antibacterial therapy. Small. 2024;20(23):2309366.

Article  CAS  Google Scholar 

Wang Y, Deng Y, Xia H, Zhang R, Liu J, Zhang H, Sun Y, Zhang Z, Lu X. Superhydrophilic triazine-based covalent organic frameworks via post-modification of FeOOH clusters for boosted photocatalytic performance. Small Methods. 2024;8(2):2300163.

Article  CAS  Google Scholar 

Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in hybridization of covalent organic frameworks and metal-organic frameworks. Small. 2022;18(38):2202928.

Article  CAS  Google Scholar 

Bi L, Xiao J, Song Y, Sun T, Luo M, Wang Y, Dong P, Zhang Y, Yao Y, Liao J, Wang S, Chou S. Sulfhydryl-functionalized COF-based electrolyte strengthens chemical affinity toward polysulfides in quasi-solid-state Li-S batteries. Carbon Energ. 2024;6(9):e544.

Article  CAS  Google Scholar 

Mouhtadi S, Urra O, Buron CC, Filiâtre C, Ferrari B, Pochard I. Nanoarchitectonics of eco-friendly nickel oxide nanoplatelets for energy storage. Appl Phys A. 2023;129:6.

Article  CAS 

Comments (0)

No login
gif