Chemiluminescent Quantification of Trimethylamine Oxide in Seafoods

Li Y, Song S, Li Y, Du F, Li S, Li J. Novel insights into the inhibitory mechanism of (+)-catechin against trimethylamine-N-oxide demethylase. Food Chem. 2022;373: 131559.

Article  CAS  PubMed  Google Scholar 

Ramireddy L, Tsen HY, Chiang YC, Hung CY, Wu SR, Young SL, Lin JS, Huang CH, Chiu SH, Chen CC, Chen CC. Molecular identification and selection of probiotic strains able to reduce the serum TMAO level in mice challenged with choline. Foods. 2021;10(12):2913.

Article  Google Scholar 

Buffa JA, Romano KA, Copeland MF, Cody DB, Zhu W, Galvez R, Fu X, Ward K, Ferrell M, Dai HJ, Skye S, Hu P, Li L, Parlov M, McMillan A, Wei X, Nemet I, Koeth RA, Li XS, Wang Z, Sangwan N, Hajjar AM, Dwidar M, Weeks TL, Bergeron N, Krauss RM, Tang WHW, Rey FE, DiDonato JA, Gogonea V, Gerberick GF, Garcia-Garcia JC, Hazen SL. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism. Nat Microbiol. 2022;7(1):73.

Article  CAS  PubMed  Google Scholar 

Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2024;21:780.

Article  PubMed  Google Scholar 

Fretts AM, Hazen SL, Jensen P, Budoff M, Sitlani CM, Wang M, de Oliveira Otto MC, DiDonato JA, Lee Y, Psaty BM, Siscovick DS, Sotoodehnia N, Tang WHW, Lai H, Lemaitre RN, Mozaffarian D. Association of trimethylamine N-oxide and metabolites with mortality in older adults. JAMA Netw Open. 2022;5(5): e2213242.

Article  PubMed  PubMed Central  Google Scholar 

Zeisel SH, Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr. 2017;37:157.

Article  CAS  PubMed  Google Scholar 

Li D, Lu Y, Yuan S, Cai X, He Y, Chen J, Wu Q, He D, Fang A, Bo Y, Song P, Bogaert D, Tsilidis K, Larsson SC, Yu H, Zhu H, Theodoratou E, Zhu Y, Li X. Gut microbiota–derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Am J Clin Nutr. 2022;116(1):230.

Article  PubMed  PubMed Central  Google Scholar 

Janeiro M, Ramírez M, Milagro F, Martínez J, Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients. 2018;10(10):1398.

Article  PubMed  PubMed Central  Google Scholar 

Yu H, Chai X, Geng WC, Zhang L, Ding F, Guo DS, Wang Y. Facile and label-free fluorescence strategy for evaluating the influence of bioactive ingredients on FMO3 activity via supramolecular host-guest reporter pair. Biosens Bioelectron. 2021;192: 113488.

Article  CAS  PubMed  Google Scholar 

Yu H, Geng W-C, Zheng Z, Gao J, Guo DS, Wang Y. Facile fluorescence monitoring of gut microbial metabolite trimethylamine N-oxide via molecular recognition of guanidinium-modified calixarene. Theranostics. 2019;9(16):4624.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shkhair AI, Madanan AS, Varghese S, Abraham MK, Indongo G, Rajeevan G, K AB, Abbas SM, George S. Mo(IV) ion-modulated BSA-protected gold nanocluster probe for fluorescence turn-on detection of trimethylamine N-oxide (TMAO). ACS Appl Bio Mater. 2024; 7 (5): 3460.

Zhang W, Sun J, Wang F, Liu J, Han Y, Jiang M, Tang D. Fluorescent assay for quantitative analysis of trimethylamineN-oxide. Anal Methods. 2021;13(12):1527.

Article  CAS  PubMed  Google Scholar 

Harrison EE, Waters ML. Application of an imprint-and-report sensor array for detection of the dietary metabolite trimethylamine N-oxide and its precursors in complex mixtures. Angew Chem Int Ed. 2022;61(33): e202205193.

Article  CAS  Google Scholar 

Jiang Y, Pu K. Molecular probes for autofluorescence-free optical imaging. Chem Rev. 2021;121(21):13086.

Article  CAS  PubMed  Google Scholar 

Gao W, Yang H, Zhang Y, Gao D, Wu C. A novel and efficient electrochemiluminescence sensing strategy for the determination of trimethylamine oxide in seafood. Talanta. 2024;269: 125409.

Article  CAS  PubMed  Google Scholar 

Chen F, Xia X, Ye D, Li T, Huang X, Cai C, Zhu C, Lin C, Deng T, Liu F. A green-emitting luminol analogue as the next-generation chemiluminescent substrate in biochemical analysis. Anal Chem. 2023;95(13):5773.

Article  CAS  PubMed  Google Scholar 

Huang J, Jiang Y, Li J, Huang J, Pu K. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging. Angew Chem Int Ed. 2021;60(8):3999.

Article  CAS  Google Scholar 

Chen F, Zhang Y, Li T, Peng D, Qi Z, Song J, Deng T, Liu F. Discovering ester and ether derivatives of luminol as advanced chemiluminescence probes. Chin Chem Lett. 2023;34(3): 107496.

Article  CAS  Google Scholar 

Schaap AP, Sandison MD, Handley RS. Chemical and enzymatic triggering of 1,2-dioxetanes. 3: alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane. Tetrahedron Lett. 1987; 28 (11): 1159.

Liu J, Huang J, Wei X, Cheng P, Pu K. Near - infrared chemiluminescence imaging of chemotherapy-induced peripheral neuropathy. Adv Mater. 2024;36:2310605.

Article  CAS  Google Scholar 

Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode. J Am Chem Soc. 2017;139(37):13243.

Article  CAS  PubMed  Google Scholar 

Green O, Eilon T, Hananya N, Gutkin S, Bauer CR, Shabat D. Opening a gateway for chemiluminescence cell imaging: Distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS Cent Sci. 2017;3(4):349.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godfrey A, Ganem B. Ready oxidation of halides to aldehydes using trimethylamine N-oxide in dimethylsulfoxide. Tetrahedron Lett. 1990;31(34):4825.

Article  CAS  Google Scholar 

Hananya N, Shabat D. Recent advances and challenges in luminescent imaging: Bright outlook for chemiluminescence of dioxetanes in water. ACS Cent Sci. 2019;5(6):949.

Article  CAS  PubMed  PubMed Central  Google Scholar 

An R, Wei S, Huang Z, Liu F, Ye D. An Activatable chemiluminescent probe for sensitive detection of γ-glutamyl transpeptidase activity in vivo. Anal Chem. 2019;91(21):13639.

Article  CAS  PubMed  Google Scholar 

Hu X, Tang R, Bai L, Liu S, Liang G, Sun X. CBT‐Cys click reaction for optical bioimaging in vivo. View. 2023;4(4):20220065.

Article  CAS  Google Scholar 

Sakamoto T, Qiu Z, Inagaki M, Fujimoto K. Simultaneous amino acid analysis based on 19F NMR using a modified OPA-derivatization method. Anal Chem. 2019;92(2):1669.

Article  PubMed  Google Scholar 

Zhang M, Liang G. Applications of CBT-Cys click reaction: past, present, and future. Sci China Chem. 2018;61(9):1088.

Article  CAS  Google Scholar 

Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci. 2014;111(12):4461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-oxide in aquatic Foods. J Agric Food Chem. 2024;72(26):14498.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif