Moretti A, Paoletta M, Liguori S, Bertone M, Toro G, Iolascon G. Choline: an essential nutrient for skeletal muscle. Nutrients. 2020;12:2144.
Article CAS PubMed PubMed Central Google Scholar
Chowdhury P, Pathak P. Neuroprotective immunity by essential nutrient “Choline” for the prevention of SARS CoV2 infections: an in silico study by molecular dynamics approach. Chem Phys Lett. 2020;761: 138057.
Article CAS PubMed PubMed Central Google Scholar
Bake KL, Bolger FB, Lowry JP. Development of a microelectrochemical biosensor for the real-time detection of choline. Sensor Actuat B Chem. 2017;243:412–20.
Huang H, Song D, Zhang W, Fang S, Zhou Q, Zhang H, Liang Z, Li Y. Choline oxidase-integrated copper metal-organic frameworks as cascade nanozymes for one-step colorimetric choline detection. J Agric Food Chem. 2022;70:5228–36.
Article CAS PubMed Google Scholar
Uwaya GE, Fayemi OE. Enhanced electrocatalytic detection of choline based on CNTs and metal oxide nanomaterials. Molecules. 2021;26:6512.
Article CAS PubMed PubMed Central Google Scholar
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer’s disease following maternal choline supplementation. Hippocampus. 2018;28:251–68.
Article CAS PubMed PubMed Central Google Scholar
Kawauchi S, Horibe S, Sasaki N, Tanahashi T, Mizuno S, Hamaguchi T, Rikitake Y. Inhibitory effects of sodium alginate on hepatic steatosis in mice induced by a methionine- and choline-deficient diet. Mar Drugs. 2019;17:104.
Article CAS PubMed PubMed Central Google Scholar
El-Rahman MKA, Mazzone G, Mahmoud AM, Sicilia E, Shoeib T. Novel choline selective electrochemical membrane sensor with application in milk powders and infant formulas. Talanta. 2021;221: 121409.
Guo J, Wu S, Wang Y, Zhao M. A label-free fluorescence biosensor based on abifunctional MIL-101(Fe) nanozymefor sensitive detection of choline and acetylcholine at nanomolar level. Sens Actuators B. 2020;312: 128021.
Olesti E, Rodríguez-Morató J, Gomez-Gomez A, Ramaekers JG, de la Torre R, Pozo OJ. Quantification of endogenous neurotransmitters and related compounds by liquid chromatography coupled to tandem mass spectrometry. Talanta. 2019;2019(192):93–102.
Gill BD, Indyk HE, Kobayashi T, McGrail IJ, Woollard DC. Comparison of LC-MS/MS and enzymatic methods for the determination of total choline and total carnitine in infant formula and milk products. J Aoac Int. 2020;103:1293–300.
Andre C, Guillaume YC. Development of nano Bio LC columns for the search of acetylcholinesterase molecular targets. J Sep Sci. 2022;45:2109–17.
Article CAS PubMed Google Scholar
Nikzad N, Karami Z. Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling. Int J Biol Macromol. 2018;115:1241–8.
Article CAS PubMed Google Scholar
Tvorynska S, Barek J, Josypcuk B. Amperometric biosensor based on enzymatic reactor for choline determination in flow systems. Electroanalysis. 2019;31:1901–12.
Ahlawat J, Sharma M, Pundir CS. An amperometric acetylcholine biosensor based on co-immobilization of enzyme nanoparticles onto nanocomposite. Biosensors. 2023;13:386.
Article CAS PubMed PubMed Central Google Scholar
Uwaya GE, Fayemi OE. Electrochemical detection of choline at f-MWCNT/Fe3O4 nanocomposite modified glassy carbon electrode. Mater Res Express. 2021;8: 055403.
Acari A, Almammadov T, Dirak M, Gulsoy G, Kolemen S. Real-time visualization of butyrylcholinesterase activity using a highly selective and sensitive chemiluminescent probe. J Mater Chem B. 2023;11:6881–8.
Article CAS PubMed Google Scholar
Yang Y, Zhang Y, Wei L, Li G, Guan M, Tian S. A highly sensitive electrochemiluminescence choline biosensor based on poly(aniline-luminol-hemin) nanocomposites. Electroanalysis. 2019;31:1–9.
Han D, Yang K, Sun SG, Wen J. Signal amplification strategies in electrochemiluminescence biosensors. Chem Eng J. 2023;476: 146688.
Feng YQ, Wang NN, Ju HX. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem. 2022;65:2417–36.
Kong Y, Fan XL, Yao X, Wu K, Deng AP, Feng XJ, Li JG. Potential-resolved electrochemiluminescence multiplex immunoassay for florfenicol and chloramphenicol in a single sample. Anal Chem. 2024;95:16639–48.
Gong ZX, Lu BY, Wang H, Ren X, Liu XJ, Ma HM, Wu D, Fan DW, Wei Q. Double-amplified electrochemiluminescence immunoassay sensor for highly sensitive detection of CA199 using a ternary semiconductor CdSSe. Anal Chem. 2024;96:1678–85.
Article CAS PubMed Google Scholar
Qiao YL, Li Y, Fu W, Guo ZH, Zheng XW. Enhancing the electrochemiluminescence of luminol by chemically modifying the reaction microenvironment. Anal Chem. 2018;90:9629–36.
Article CAS PubMed Google Scholar
Mayer M, Takegami S, Neumeier M, Rink S, Von Jacobi AW. Electrochemiluminescence bioassays with a water-soluble luminol derivative can outperform fluorescence assays. Angew Chem Int Ed. 2018;57:408–11.
Zhang JJ, Jin R, Chen Y, Fang DJ, Jiang DC. Enhanced electrochemiluminescence at single lithium iron phosphate nanoparticles for the local sensing of hydrogen peroxide efflux from single living cell under a low voltage. Sens Actuators, B. 2021;329: 129208.
Wang YL, Jiang DC, Chen HY. Wireless electrochemical visualization of intracellular antigens in single cells. CCS Chem. 2022;4:2221–7.
Zhang HR, Liu Y, Yao M, Han WX, Zhang SS. Cathodic electrochemiluminesence microscopy for imaging of single carbon nanotube and nucleolin at single tumor cell. Anal Chem. 2023;95:570–4.
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry. 2023;149:108281.
Article CAS PubMed Google Scholar
Xia MK, Yang X, Jiao TH, Munetaka O, Chen QS, Chen XM. Self-enhanced electrochemiluminescence of luminol induced by palladium–graphene oxide for ultrasensitive detection of aflatoxin B1 in food samples. Food Chem. 2022;381: 132276.
Article CAS PubMed Google Scholar
Wang JJ, Li SL, Wei J, Jiao TH, Chen QM, Munetaka O, Chen QS, Chen XM. Screening-capture-integrated electrochemiluminescent aptasensor based on mesoporous silica nanochannels for the ultrasensitive detection of deoxynivalenol in wheat. J Agric Food Chem. 2023;71:12052–60.
Article CAS PubMed Google Scholar
Wang JJ, Xia MK, Wei J, Jiao TH, Chen QM, Chen QS, Chen XM. Dual-signal amplified cathodic electrochemiluminescence aptsensor based on a europium-porphyrin coordination polymer for the ultrasensitive detection of zearalenone in maize. Sensor Actuat B Chem. 2023;382: 133532.
Cui C, Chen Y, Jiang DC, Zhu JJ, Chen HY. Attomole antigen detection using self-electrochemiluminous graphene oxide-capped Au@L012 nanocomposite. Anal Chem. 2017;89:2418–23.
Article CAS PubMed Google Scholar
Guo XJ, Li YB, Li YC, Ye ZY, Zhang JJ, Zhu T, Li F. An L012@PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes. Electrochim Acta. 2020;354: 136763.
Comments (0)