fusion driver in primary central nervous system malignancy: case report

Andreiuolo F, Varlet P, Tauziède-Espariat A, Jünger ST, Dörner E et al (2019) Childhood supratentorial ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathol 29(2):205–216. https://doi.org/10.1111/bpa.12659

Article  CAS  PubMed  Google Scholar 

Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384:641–643. https://doi.org/10.1038/384641a0

Article  CAS  PubMed  Google Scholar 

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D et al (2018) DNA methylation-based classification of central nervous system tumors. Nature 555:469–474. https://doi.org/10.1038/nature26000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo S, Hu X, Cotton JL, Ma L, Li Q et al (2024) VGLL2 and TEAD1 fusion proteins drive YAP/TAZ-independent transcription and tumorigenesis by engaging p300. BioRxiv [Preprint] 3:2024.05.01.592016. https://doi.org/10.1101/2024.05.01.592016

Hao Y, Chun A, Cheung K, Rashidi B, Yang X (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283(9):5496–5509. https://doi.org/10.1074/jbc.M709037200

Article  CAS  PubMed  Google Scholar 

Harvey KF, Hariharan IK (2012) The hippo pathway. Cold Spring Harb Perspect Biol 4(8):a011288. https://doi.org/10.1101/cshperspect.a011288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hogg SJ, Motorna O, Cluse LA, Johanson TM, Coughlan HD et al (2021) Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol Cell 81(10):2183-2200.e13. https://doi.org/10.1016/j.molcel.2021.04.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738. https://doi.org/10.1158/0008-5472.CAN-10-2711

Article  CAS  PubMed  Google Scholar 

Lei Q-Y, Zhang H, Zhao B, Zha Z-Y, Bai F et al (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28(7):2426–2436. https://doi.org/10.1128/MCB.01874-07

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, Sun Y, Jarugumilli GK, Liu S, Dang K et al (2020) Lats1/2 sustain intestinal stem cells and Wnt activation through tead-dependent and Independent transcription. Cell Stem Cell 26:675–92.e8. https://doi.org/10.1016/j.stem.2020.03.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma S, Meng Z, Chen R, Guan KL (2019) The Hippo pathway: biology and pathophysiology. Annu Rev Biochem 88:577–604. https://doi.org/10.1146/annurev-biochem-013118-111829

Article  CAS  PubMed  Google Scholar 

Meng Z, Moroishi T, Guan K-L (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17. https://doi.org/10.1101/gad.274027.115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen C-L et al (2013) Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 52(6):538–550. https://doi.org/10.1002/gcc.22050

Article  CAS  PubMed  Google Scholar 

Pajtler KW, Witt H, Sill M, Jones DTW, Hovestadt V et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27(5):728–743. https://doi.org/10.1016/j.ccell.2015.04.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma. Nature 506(7489):451–455. https://doi.org/10.1038/nature13109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pehlivan KC, Malicki DM, Levy ML, Crawford JR (2020) TPM3-NTRK1 fusion in a pleomorphic xanthoastrocytoma presenting with haemorrhage in a child. BMJ 13(3):e234347. https://doi.org/10.1136/bcr-2020-234347

Article  Google Scholar 

Petrilli AM, Fernández- Valle C (2016) Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35:537–548. https://doi.org/10.7554/eLife.78810

Article  CAS  PubMed  Google Scholar 

Pobbati AV, Kumar R, Rubin BP, Hong W (2023) Therapeutic Targeting of Tead Transcription Factors in Cancer. Trends Biochem Sci 48:450–462. https://doi.org/10.1016/j.tibs.2022.12.005

Article  CAS  PubMed  Google Scholar 

Riemenschneider MJ, Perry A, Reifenberger G (2006) Histological classification and molecular genetics of meningiomas. Lancet Neurol 5(12):1045–1054. https://doi.org/10.1016/S1474-4422(06)70625-1

Article  CAS  PubMed  Google Scholar 

Schieffer KM, Agarwal V, LaHaye S, Miller KE, Koboldt DC et al (2021) YAP1-FAM118B fusion defines a rare subset of childhood and young adulthood meningiomas. Am J Surg Pathol 45(3):329–340. https://doi.org/10.1097/PAS.0000000000001597

Article  PubMed  Google Scholar 

Szulzewsky F, Arora S, Arakaki AKS, Sievers P, Almiron Bonnin DA et al (2022) Both YAP1-MAML2 and constitutively active YAP1 drive the formation of tumors that resemble NF2 mutant meningiomas in mice. Genes Dev 36(13–14):857–870. https://doi.org/10.1101/gad.349876.122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szulzewsky F, Arora S, Hoellerbauer P, King C, Nathan E et al (2020) Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes Dev 34:1051–1064. https://doi.org/10.1101/gad.338681.120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szulzewsky F, Holland EC, Vasioukhin V (2021) YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 475:205–221. https://doi.org/10.1016/j.ydbio.2020.12.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan GZL, Saminathan SN, Chang KTE, Odoño EG, Kuick CH et al (2020) A rare case of congenital spindle cell rhabdomyosarcoma with TEAD1-NCOA2 fusion: A subset of spindle cell rhabdomyosarcoma with indolent behavior. Pathol Int 70(4):234–236. https://doi.org/10.1111/pin.12908

Article  PubMed  Google Scholar 

Tauziède-Espariat A, Siegfried A, Nicaise Y, Kergrohen T, Sievers P et al (2021) Supratentorial Non-Rela, Zfta-fused ependymomas: a comprehensive phenotype genotype correlation highlighting the number of zinc fingers in Zfta-Ncoa1/2 fusions. Acta Neuropathol Commun 9:135. https://doi.org/10.1186/s40478-021-01238-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tauziède-Espariat A, Appay R, Bouvier C, Testud B, Girard N et al (2025) A Novel TEAD1::NCOA2 Fusion that Potentially Expands the Concept of Supratentorial Ependymoma, YAP1 Fusion-Positive. Acta Neuropathol in press

Tomomasa R, Arai Y, Kawabata-Iwakawa R, Fukuoka K, Nakano Y et al (2021) Ependymoma-like tumor with mesenchymal differentiation harboring C11orf95-Ncoa1/2 or -Rela fusion: a hitherto unclassified tumor related to ependymoma. Brain Pathol 31:e12943. https://doi.org/10.1111/bpa.12943

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waddell AR, Huang H, Liao D (2021) CBP/p300: critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers. Cancers (Basel) 13(12):2872. https://doi.org/10.3390/cancers13122872

Article  CAS  PubMed 

Comments (0)

No login
gif