Evidence of COMT dysfunction in the olfactory bulb in Parkinson’s disease

Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, Driver-Dunckley E et al (2014) Low clinical diagnostic accuracy of early vs advanced Parkinson disease. Clinicopathol Study 83:406–412. https://doi.org/10.1212/wnl.0000000000000641

Article  Google Scholar 

Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE (2003) Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 23:2008–2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alastair John N, Andrew John L, Anette-Eleonore S (2016) The prediagnostic phase of Parkinson’s disease. J Neurol Neurosurg Psychiatry 87:871. https://doi.org/10.1136/jnnp-2015-311890

Article  Google Scholar 

Beauchamp LC, Chan J, Hung LW, Padman BS, Vella LJ, Liu XM et al (2018) Ablation of tau causes an olfactory deficit in a murine model of Parkinson’s disease. Acta Neuropathol Commun 6:57. https://doi.org/10.1186/s40478-018-0560-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beauchamp LC, Dore V, Villemagne VL, Xu S, Finkelstein D, Barnham KJ et al (2023) Using (18)F-AV-133 VMAT2 PET imaging to monitor progressive nigrostriatal degeneration in Parkinson disease. Neurology 101:e2314–e2324. https://doi.org/10.1212/wnl.0000000000207748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beauchamp LC, Liu XM, Vella LJ, Adlard PA, Bush AI, Finkelstein DI et al (2022) ATH434 rescues pre-motor hyposmia in a mouse model of Parkinsonism. Neurotherapeutics 19:1966–1975. https://doi.org/10.1007/s13311-022-01300-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benarroch EE (2010) Olfactory system: functional organization and involvement in neurodegenerative disease. Neurology 75:1104–1109

Article  PubMed  Google Scholar 

Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

Article  PubMed  Google Scholar 

Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144. https://doi.org/10.1111/j.1600-0773.1963.tb01730.x

Article  CAS  Google Scholar 

Cockerham R, Liu S, Cachope R, Kiyokage E, Cheer JF, Shipley MT et al (2016) Subsecond regulation of synaptically released dopamine by COMT in the olfactory bulb. J Neurosci: Off J Soc Neurosci 36:7779–7785. https://doi.org/10.1523/JNEUROSCI.0658-16.2016

Article  CAS  Google Scholar 

Coronas V, Srivastava LK, Liang J-J, Jourdan F, Moyse E (1997) Identification and localization of dopamine receptor subtypes in rat olfactory mucosa and bulb: a combined in situ hybridization and ligand binding radioautographic approach. J Chem Neuroanat 12:243–257

Article  CAS  PubMed  Google Scholar 

Daniel SE, Hawkes CH (1992) Preliminary diagnosis of Parkinson’s disease by olfactory bulb pathology. Lancet 340:186. https://doi.org/10.1016/0140-6736(92)93275-r

Article  CAS  PubMed  Google Scholar 

Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12. https://doi.org/10.1016/j.abb.2010.12.017

Article  CAS  PubMed  Google Scholar 

Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114:1179–1187

Article  CAS  PubMed  Google Scholar 

Dias FRC, de Matos LW, Sampaio MdFdS, Carey RJ, Carrera MP (2012) Opposite effects of low versus high dose haloperidol treatments on spontaneous and apomorphine induced motor behavior: evidence that at a very low dose haloperidol acts as an indirect dopamine agonist. Behav Brain Res 229:153–159. https://doi.org/10.1016/j.bbr.2011.12.042

Article  CAS  PubMed  Google Scholar 

Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8:329–339. https://doi.org/10.1038/nrneurol.2012.80

Article  CAS  PubMed  Google Scholar 

Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in Parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38:1237–1237

Article  CAS  PubMed  Google Scholar 

Doty RL, Risser JM (1989) Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Psychopharmacology 98:310–315. https://doi.org/10.1007/bf00451680

Article  CAS  PubMed  Google Scholar 

Doty RL, Risser JM (1989) Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Psychopharmacology 98:310–315

Article  CAS  PubMed  Google Scholar 

Doty RL, Stern MB, Pfeiffer C, Gollomp SM, Hurtig HI (1992) Bilateral olfactory dysfunction in early stage treated and untreated idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:138–142. https://doi.org/10.1136/jnnp.55.2.138

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Etri MM, Nickell WT, Ennis M, Skau KA, Shipley MT (1992) Brain norepinephrine reductions in soman-intoxicated rats: association with convulsions and AChE inhibition, time course, and relation to other monoamines. Exp Neurol 118:153–163. https://doi.org/10.1016/0014-4886(92)90032-L

Article  CAS  PubMed  Google Scholar 

Escanilla O, Yuhas C, Marzan D, Linster C (2009) Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci 123:828

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flores-Cuadrado A, Saiz-Sanchez D, Mohedano-Moriano A, Lamas-Cenjor E, Leon-Olmo V, Martinez-Marcos A et al (2021) Astrogliosis and sexually dimorphic neurodegeneration and microgliosis in the olfactory bulb in Parkinson’s disease. NPJ Parkinsons Dis 7:11. https://doi.org/10.1038/s41531-020-00154-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardner B, Dieriks BV, Cameron S, Mendis LHS, Turner C, Faull RLM et al (2017) Metal concentrations and distributions in the human olfactory bulb in Parkinson’s disease. Sci Rep 7:10454. https://doi.org/10.1038/s41598-017-10659-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49. https://doi.org/10.1016/0165-6147(93)90029-j

Article  CAS  PubMed  Google Scholar 

Gnegy ME (2012) Chapter 14—Catecholamines. In: Brady ST, Siegel GJ, Albers RW, Price DL (eds) Basic neurochemistry, 8th edn. Academic Press, Cambridge, pp 283–299

Chapter  Google Scholar 

Hawkes C, Shephard B, Daniel S (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:436–446

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hitri A, Hurd YL, Wyatt RJ, Deutsch SI (1994) Molecular, functional and biochemical characteristics of the dopamine transporter: regional differences and clinical relevance. Clin Neuropharmacol 17:1–22. https://doi.org/10.1097/00002826-199402000-00001

Article  CAS  PubMed  Google Scholar 

Hsia AY, Vincent J-D, Lledo P-M (1999) Dopamine depresses synaptic inputs into the olfactory bulb. J Neurophysiol 82:1082–1085

Article  CAS 

Comments (0)

No login
gif