PRODE recovers essential and context-essential genes through neighborhood-informed scores

Bartha I, di Iulio J, Venter JC, Telenti A. Human gene essentiality. Nat Rev Genet. 2018;19:51–62.

Article  CAS  PubMed  Google Scholar 

Rancati G, Moffat J, Typas A, Pavelka N. Emerging and evolving concepts in gene essentiality. Nat Rev Genet. 2018;19:34–49.

Article  CAS  PubMed  Google Scholar 

Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568:511–6.

Article  CAS  PubMed  Google Scholar 

Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163:1515–26.

Article  CAS  PubMed  Google Scholar 

O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet. 2017;18:613–23.

Article  PubMed  Google Scholar 

Topatana W, Juengpanich S, Li S, Cao J, Hu J, Lee J, et al. Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. J Hematol Oncol. 2020;13:118.

Article  PubMed  PubMed Central  Google Scholar 

Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, et al. PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov. 2014;4:1430–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinstag G, Shulman ED, Elis E, Ben-Zvi DS, Tirosh O, Maimon E, et al. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med. 2023;4:15-30.e8.

Article  CAS  PubMed  Google Scholar 

Lee JS, Das A, Jerby-Arnon L, Arafeh R, Auslander N, Davidson M, et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nat Commun. 2018;9:2546.

Article  PubMed  PubMed Central  Google Scholar 

Lee JS, Nair NU, Dinstag G, Chapman L, Chung Y, Wang K, et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell. 2021;184:2487-2502.e13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, Dumont N, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 2019;568:551–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen-Sharir Y, McFarland JM, Abdusamad M, Marquis C, Bernhard SV, Kazachkova M, et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature. 2021;590:486–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong C, Schubert M, Tijhuis AE, Requesens M, Roorda M, van den Brink A, et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature. 2022;607:366–73.

Article  CAS  PubMed  Google Scholar 

Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a cancer dependency map. Cell. 2017;170:564-576.e16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dempster JM, Boyle I, Vazquez F, Root DE, Boehm JS, Hahn WC, et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 2021;22:343.

Article  PubMed  PubMed Central  Google Scholar 

Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554.

Article  PubMed  PubMed Central  Google Scholar 

Iorio F, Behan FM, Gonçalves E, Bhosle SG, Chen E, Shepherd R, et al. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. BMC Genomics. 2018;19:604.

Article  PubMed  PubMed Central  Google Scholar 

Pacini C, Duncan E, Gonçalves E, Gilbert J, Bhosle S, Horswell S, et al. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization. Cancer Cell. 2024;42:301-316.e9.

Article  CAS  PubMed  Google Scholar 

Lord CJ, Quinn N, Ryan CJ. Integrative analysis of large-scale loss-of-function screens identifies robust cancer-associated genetic interactions. Elife. 2020;9. https://doi.org/10.7554/eLife.58925.

Pacini C, Dempster JM, Boyle I, Gonçalves E, Najgebauer H, Karakoc E, et al. Integrated cross-study datasets of genetic dependencies in cancer. Nat Commun. 2021;12:1661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan CJ, Bajrami I, Lord CJ. Synthetic lethality and cancer - penetrance as the major barrier. Trends Cancer Res. 2018;4:671–83.

Article  CAS  Google Scholar 

Heo S-J, Enriquez LD, Federman S, Chang AY, Mace R, Shevade K, et al. Compact CRISPR genetic screens enabled by improved guide RNA library cloning. Genome Biol. 2024;25:25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith I, Greenside PG, Natoli T, Lahr DL, Wadden D, Tirosh I, et al. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the connectivity map. PLoS Biol. 2017;15: e2003213.

Article  PubMed  PubMed Central  Google Scholar 

Morgens DW, Deans RM, Li A, Bassik MC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat Biotechnol. 2016;34:634–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azhagesan K, Ravindran B, Raman K. Network-based features enable prediction of essential genes across diverse organisms. PLoS One. 2018;13: e0208722.

Article  PubMed  PubMed Central  Google Scholar 

Benstead-Hume G, Wooller SK, Renaut J, Dias S, Woodbine L, Carr AM, et al. Biological network topology features predict gene dependencies in cancer cell-lines. Bioinform Adv. 2022;2:vbac084.

Article  PubMed  PubMed Central  Google Scholar 

Zhong J, Tang C, Peng W, Xie M, Sun Y, Tang Q, et al. A novel essential protein identification method based on PPI networks and gene expression data. BMC Bioinformatics. 2021;22:248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Xiao W, Xiao W. DeepHE: accurately predicting human essential genes based on deep learning. PLoS Comput Biol. 2020;16: e1008229.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif