Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 2021;23:15.
Article PubMed PubMed Central Google Scholar
Haffner MC, Morris MJ, Ding C-KC, Sayar E, Mehra R, Robinson B et al. Framework for the pathology workup of metastatic castration-resistant prostate cancer biopsies. Clin Cancer Res [Internet]. 2024; Available from: https://doi.org/10.1158/1078-0432.CCR-24-2061
Eule CJ, Hu J, Al-Saad S, Collier K, Boland P, Lewis AR, et al. Outcomes of second-line therapies in patients with metastatic de Novo and treatment-emergent neuroendocrine prostate cancer: a multi-institutional study. Clin Genitourin Cancer. 2023;21:483–90.
Article PubMed PubMed Central Google Scholar
Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate Cancer: a multi-institutional prospective study. J Clin Oncol. 2018;36:2492–503.
Article CAS PubMed PubMed Central Google Scholar
Quintanal-Villalonga Á, Chan JM, Yu HA, Pe’er D, Sawyers CL, Sen T, et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol. 2020;17:360–71.
Article PubMed PubMed Central Google Scholar
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.
Article PubMed PubMed Central Google Scholar
Rubin MA, Bristow RG, Thienger PD, Dive C, Imielinski M. Impact of lineage plasticity to and from a neuroendocrine phenotype on progression and response in prostate and lung cancers. Mol Cell. 2020;80:562–77.
Article CAS PubMed PubMed Central Google Scholar
Lundberg A, Zhang M, Aggarwal R, Li H, Zhang L, Foye A, et al. The genomic and Epigenomic Landscape of double-negative metastatic prostate Cancer. Cancer Res. 2023;83:2763–74.
Article CAS PubMed PubMed Central Google Scholar
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78–83.
Article CAS PubMed PubMed Central Google Scholar
Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen C-C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–8.
Article CAS PubMed PubMed Central Google Scholar
Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a mechanism of Treatment Resistance in a mouse model of castration-resistant prostate Cancer. Cancer Discov. 2017;7:736–49.
Article CAS PubMed PubMed Central Google Scholar
Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91–5.
Article CAS PubMed PubMed Central Google Scholar
Romero R, Chu T, González Robles TJ, Smith P, Xie Y, Kaur H et al. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. Nat Cancer. 2024;1–19.
Aparicio AM, Shen L, Tapia ELN, Lu J-F, Chen H-C, Zhang J, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res. 2016;22:1520–30.
Article CAS PubMed Google Scholar
Corn PG, Heath EI, Zurita A, Ramesh N, Xiao L, Sei E, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1–2 trial. Lancet Oncol. 2019;20:1432–43.
Article CAS PubMed PubMed Central Google Scholar
Cyrta J, Augspach A, De Filippo MR, Prandi D, Thienger P, Benelli M, et al. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat Commun. 2020;11:5549.
Article CAS PubMed PubMed Central Google Scholar
Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 2022;601:434–9.
Article CAS PubMed Google Scholar
Li JJ, Vasciaveo A, Karagiannis D, Sun Z, Chen X, Socciarelli F et al. NSD2 maintains lineage plasticity and castration-resistance in neuroendocrine prostate cancer. bioRxivorg. 2023;2023.07.18.549585.
Parolia A, Eyunni S, Verma BK, Young E, Liu Y, Liu L et al. NSD2 is a requisite subunit of the AR/FOXA1 neo-enhanceosome in promoting prostate tumorigenesis. Nat Genet. 2024;1–12.
Adams EJ, Karthaus WR, Hoover E, Liu D, Gruet A, Zhang Z, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019;571:408–12.
Article CAS PubMed PubMed Central Google Scholar
Baca SC, Takeda DY, Seo J-H, Hwang J, Ku SY, Arafeh R, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat Commun. 2021;12:1979.
Article CAS PubMed PubMed Central Google Scholar
Han M, Li F, Zhang Y, Dai P, He J, Li Y, et al. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Cancer Cell. 2022;40:1306–e13238.
Article CAS PubMed Google Scholar
Nouruzi S, Namekawa T, Tabrizian N, Kobelev M, Sivak O, Scurll JM et al. ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer. JCI Insight [Internet]. 2024 [cited 2024 Oct 31]; Available from: https://pubmed.ncbi.nlm.nih.gov/39470735/
Nouruzi S, Ganguli D, Tabrizian N, Kobelev M, Sivak O, Namekawa T, et al. ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nat Commun. 2022;13:2282.
Article CAS PubMed PubMed Central Google Scholar
Chen C-C, Tran W, Song K, Sugimoto T, Obusan MB, Wang L, et al. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell. 2023;41:2066–82.e9.
Article CAS PubMed PubMed Central Google Scholar
Rodarte KE, Nir Heyman S, Guo L, Flores L, Savage TK, Villarreal J et al. Neuroendocrine differentiation in prostate cancer requires ASCL1. Cancer Res [Internet]. 2024 [cited 2024 Oct 11]; Available from: https://pubmed.ncbi.nlm.nih.gov/39264686/
Varuzhanyan G, Chen C-C, Freeland J, He T, Tran W, Song K et al. PGC-1α drives small cell neuroendocrine cancer progression towards an ASCL1-expressing subtype with increased mitochondrial capacity. bioRxivorg [Internet]. 2024 [cited 2024 Oct 11]; Available from: https://pubmed.ncbi.nlm.nih.gov/38645232/
Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, et al. N-Myc drives neuroendocrine prostate Cancer initiated from human prostate epithelial cells. Cancer Cell. 2016;29:536–47.
Article CAS PubMed PubMed Central Google Scholar
Xu P, Yang JC, Chen B, Ning S, Zhang X, Wang L, et al. Proteostasis perturbation of N-Myc leveraging HSP70 mediated protein turnover improves treatment of neuroendocrine prostate cancer. Nat Commun. 2024;15:6626.
Article CAS PubMed PubMed Central Google Scholar
Qian C, Yang Q, Rotinen M, Huang R, Kim H, Gallent B, et al. ONECUT2 acts as a lineage plasticity driver in adenocarcinoma as well as neuroendocrine variants of prostate cancer. Nucleic Acids Res. 2024;52:7740–60.
Article CAS PubMed PubMed Central Google Scholar
Xu Y, Vakoc CR. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb Perspect Med. 2017;7:a026674.
Article PubMed PubMed Central Google Scholar
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82.
Article CAS PubMed PubMed Central Google Scholar
Asangani IA, Wilder-Romans K, Dommeti VL, Krishnamurthy PM, Apel IJ, Escara-Wilke J, et al. BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol Cancer Res. 2016;14:324–31.
Comments (0)