Michaeli JC, Boch T, Albers S, Michaeli T, Michaeli DT. Socio-economic burden of disease: Survivorship costs for bladder cancer. J Cancer Policy. 2022;32:100326. https://doi.org/10.1016/j.jcpo.2022.100326.
Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics. 2003;21(18):1315–30. https://doi.org/10.1007/BF03262330.
Wan J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38. https://doi.org/10.1038/nrc.2017.7.
Article CAS PubMed Google Scholar
Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. https://doi.org/10.1200/JCO.2012.45.2011.
Article PubMed PubMed Central Google Scholar
Suartz CV, Martinez LM, Cordeiro MD, Botelho LAA, Gallutti FP, Mota JM, Leite KRM, Toren P, Nahas WC, Ribeiro-Filho LA. Honing the Hunt: A Comprehensive Review of Cell-free Tumor DNA to Predict Neoadjuvant Therapy Efficacy in Bladder Cancer. Clin Genitourin Cancer. 2024;22(3):102087. https://doi.org/10.1016/j.clgc.2024.102087.
Herranz R, Oto J, Plana E, Fernández-Pardo Á, Cana F, Martínez-Sarmiento M, Vera-Donoso CD, España F, Medina P. Circulating Cell-Free DNA in Liquid Biopsies as Potential Biomarker for Bladder Cancer: A Systematic Review. Cancers (Basel). 2021;13(6):1448. https://doi.org/10.3390/cancers13061448.
Article CAS PubMed PubMed Central Google Scholar
Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15:131. https://doi.org/10.1186/s13045-022-01351-y.
Article CAS PubMed PubMed Central Google Scholar
Liu H, Chen J, Huang Y, Zhang Y, Ni Y, Xu N, Zhao F, Tang Y, Liu H, Sun G, Shen P, Liu Z, Huang J, Liao B, Zeng H. Prognostic significance of circulating tumor DNA in urothelial carcinoma: a systematic review and meta-analysis. Int J Surg. 2024;110(6):3923–36. https://doi.org/10.1097/JS9.0000000000001372.
Article PubMed PubMed Central Google Scholar
Ponti G, Manfredini M, Tomasi A. Non-blood sources of cell-free DNA for cancer molecular profiling in clinical pathology and oncology. Crit Rev Oncol Hematol. 2019;141:36–42. https://doi.org/10.1016/j.critrevonc.2019.06.005.
Bhalla S, Passarelli R, Biswas A, De S, Ghodoussipour S. Plasma-derived cell-free dna as a biomarker for early detection, prognostication, and personalized treatment of urothelial carcinoma. J Clin Med. 2024;13(7):2057. https://doi.org/10.3390/jcm13072057.
Article CAS PubMed PubMed Central Google Scholar
Lee DH, Yoon H, Park S, et al. Urinary Exosomal and cell-free DNA Detects somatic mutation and copy number alteration in urothelial carcinoma of bladder. Sci Rep. 2018;8:14707. https://doi.org/10.1038/s41598-018-32900-6.
Article CAS PubMed PubMed Central Google Scholar
Herranz R, Oto J, Hueso M, Plana E, Cana F, Castaño M, Cordón L, Ramos-Soler D, Bonanad S, Vera-Donoso CD, Martínez-Sarmiento M, Medina P. Bladder cancer patients have increased NETosis and impaired DNaseI-mediated NET degradation that can be therapeutically restored in vitro. Front Immunol. 2023;19(14):1171065. https://doi.org/10.3389/fimmu.2023.1171065.
Huang FF, Di XF, Bai MH. Analysis of urine cell-free DNA in bladder cancer diagnosis by emerging bioactive technologies and materials. Front Bioeng Biotechnol. 2024;4(12):1458362. https://doi.org/10.3389/fbioe.2024.1458362.
Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget. 2017;8:69162–73. Available from: https://www.oncotarget.com/article/19942/text/
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087. https://doi.org/10.1016/j.bdq.2019.100087.
Article CAS PubMed PubMed Central Google Scholar
Henriksen TV, Reinert T, Christensen E, Sethi H, Birkenkamp-Demtröder K, Gögenur M, Gögenur I, Zimmermann BG, Improve Study Group, Dyrskjøt L, Andersen CL. The effect of surgical trauma on circulating free DNA levels in cancer patients-implications for studies of circulating tumor DNA. Mol Oncol. 2020 Aug;14(8):1670–9. https://doi.org/10.1002/1878-0261.12729
Christensen E, Nordentoft I, Vang S, Birkenkamp-Demtröder K, Jensen JB, Agerbæk M, Pedersen JS, Dyrskjøt L. Optimized targeted sequencing of cell-free plasma DNA from bladder cancer patients. Sci Rep. 2018;8:20282. https://doi.org/10.1038/s41598-018-20282-8.
Togneri FS, Ward DG, Foster JM, Devall AJ, Wojtowicz P, Alyas S, Vasques FR, Oumie A, James ND, Cheng KK, Zeegers MP, Deshmukh N, O’Sullivan B, Taniere P, Spink KG, McMullan DJ, Griffiths M, Bryan RT. Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA. Eur J Hum Genet. 2016;24(8):1167–74. https://doi.org/10.1038/ejhg.2015.281.
Article CAS PubMed PubMed Central Google Scholar
Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, Collisson EA, Divers SG, Hoon DS, Kopetz ES, Lee J, Nikolinakos PG, Baca AM, Kermani BG, Eltoukhy H, Talasaz A. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE. 2015;10(10):e0140712. https://doi.org/10.1371/journal.pone.0140712.
Article CAS PubMed PubMed Central Google Scholar
Li P, Ning J, Luo X, Du H, Zhang Q, Zhou G, Du Q, Ou Z, Wang L, Wang Y. New method to preserve the original proportion and integrity of urinary cell-free DNA. J Clin Lab Anal. 2018;33(2):e22668. https://doi.org/10.1002/jcla.22668.
Article CAS PubMed PubMed Central Google Scholar
Cheng THT, Jiang P, Teoh JY, et al. Noninvasive detection of bladder cancer by shallow-depth genome-wide bisulfite sequencing of urinary cell-free DNA for methylation and copy number profiling. Clin Chem. 2019;65(7):927–36. https://doi.org/10.1373/clinchem.2019.306777.
Article CAS PubMed Google Scholar
Christensen E, Birkenkamp-Demtröder K, Sethi H, Shchegrova S, Salari R, Nordentoft I, Wu HT, Knudsen M, Lamy P, Lindskrog SV, Taber A, Balcioglu M, Vang S, Assaf Z, Sharma S, Tin AS, Srinivasan R, Hafez D, Reinert T, Navarro S, Dyrskjøt L. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol. 2019;37(18):1547–57. https://doi.org/10.1200/JCO.18.02052.
Article CAS PubMed Google Scholar
Nordentoft I, Lindskrog SV, Birkenkamp-Demtröder K, Gonzalez S, Kuzman M, Levatic J, Glavas D, Ptashkin R, Smadbeck J, Afterman D, Lauterman T, Cohen Y, Donenhirsh Z, Tavassoly I, Alon U, Frydendahl A, Rasmussen MH, Andersen CL, Lamy P, Dyrskjøt L. Whole-genome mutational analysis for tumor-informed detection of circulating tumor DNA in patients with urothelial carcinoma. Eur Urol. 2024;86(4):301–11. https://doi.org/10.1016/j.eururo.2024.05.014.
Article CAS PubMed Google Scholar
Baer C, Kern W, Koch S, Nadarajah N, Schindela S, Meggendorfer M, et al. Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation T315I in chronic myeloid leukemia [Internet]. Vol. 101, Haematologica. Ferrata Storti Foundation (Haematologica); 2016. p. 830–8. Available from: https://doi.org/10.3324/haematol.2016.145888
Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors [Internet]. Vol. 8, Nature Communications. Springer Science and Business Media LLC; 2017. Available from: https://doi.org/10.1038/s41467-017-00965-y
Treatment of Metastatic Bladder Cancer at the Time of Biochemical reLApse Following Radical Cystectomy - Full Text View - ClinicalTrials.gov [Internet]. [cited 2023 Dec 18]. Available online: https://clinicaltrials.gov/ct2/show/NCT04138628
Szarvas T, Kovalszky I, Bedi K, Szendroi A, Majoros A, Riesz P, Füle T, László V, Kiss A, Romics I. Deletion analysis of tumor and urinary DNA to detect bladder cancer: Urine supernatant versus urine sediment. Oncol Rep. 2007;18(2):405–10. https://doi.org/10.3892/or.18.2.405.
Article CAS PubMed Google Scholar
Millis SZ, Bryant D, Basu G, Bender R, Vranic S, Gatalica Z, Vogelzang NJ. Molecular profiling of infiltrating urothelial carcinoma of bladder and nonbladder origin. Clin Genitourin Cancer. 2015;13(1):e37-49. https://doi.org/10.1016/j.clgc.2014.07.010.
Russo IJ, Ju Y, Gordon NS, Zeegers MP, Cheng KK, James ND, Bryan RT, Ward DG. Toward personalised liquid biopsies for urothelial carcinoma: Characterisation of ddPCR and urinary cfDNA for the detection of the TERT 228 GA/T mutation. Bladder Cancer. 2018;4(1):41–8. https://doi.org/10.3233/blc-170152.
Christensen E, Birkenkamp-Demtröder K, Nordentoft I, Høyer S, van der Keur K, van Kessel K, Zwarthoff E, Agerbæk M, Ørntoft TF, Jensen JB, Dyrskjøt L. Liquid biopsy analysis of FGFR3 and PIK3CA hotspot mutations for disease surveillance in bladder cancer. Eur Urol. 2017;71(6):961–9. https://doi.org/10.1016/j.eururo.2016.12.016.
Comments (0)