Solid state NMR spectral editing of histidine, arginine and lysine using Hadamard encoding

Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

Article  ADS  Google Scholar 

Barbet-Massin E et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497

Article  MATH  Google Scholar 

Bertini I et al (2011) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci U S A 108:10396–10399

Article  ADS  MATH  Google Scholar 

Bertini I et al (2012) NMR properties of sedimented solutes. Phys Chem Chem Phys 14:439–447

Article  MATH  Google Scholar 

Cavanagh, J., Fairbrother, W.J., Palmer, A.G., Rance, M. & Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice, 2nd Edition. Protein Nmr Spectroscopy: Principles and Practice, 2nd Edition, 1–888 (2007).

Delaglio F et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

Article  Google Scholar 

Esadze A, Li DW, Wang T, Bruschweiler R, Iwahara J (2011) Dynamics of lysine side-chain amino groups in a protein studied by heteronuclear 1H–15N NMR spectroscopy. J Am Chem Soc 133:909–919

Article  Google Scholar 

Fletcher DW, Haselgrove JC, Bolinger L (1999) High-resolution imaging using Hadamard encoding. Magn Reson Imaging 17:1457–1468

Article  Google Scholar 

Fu R, Gordon ED, Hibbard DJ, Cotten M (2009) High Resolution Heteronuclear Correlation NMR Spectroscopy of an Antimicrobial Peptide in Aligned Lipid Bilayers: Peptide−Water Interactions at the Water−Bilayer Interface. J Am Chem Soc 131:10830–10831

Article  Google Scholar 

Fu R, Miao Y, Qin H, Cross TA (2020) Observation of the Imidazole-Imidazolium Hydrogen Bonds Responsible for Selective Proton Conductance in the Influenza A M2 Channel. J Am Chem Soc 142:2115–2119

Article  Google Scholar 

Fujita J et al (2023) Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis. Sci Rep 13:2279

Article  ADS  MATH  Google Scholar 

Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 1969(93):93–141

ADS  Google Scholar 

Gopinath T, Kumar A (2006) Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms. J Magn Reson 183:259–268

Article  ADS  MATH  Google Scholar 

Gopinath T, Weber DK, Veglia G (2020) Multi-receiver solid-state NMR using polarization optimized experiments (POE) at ultrafast magic angle spinning. J Biomol NMR 74:267–285

Article  Google Scholar 

Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 1969(81):196–200

ADS  Google Scholar 

Ha, Y., Shi, D., Small, G.W., Theil, E.C. & Allewell, N.M. Crystal structure of bullfrog M ferritin at 2.8 A resolution: analysis of subunit interactions and the binuclear metal center. J Biol Inorg Chem 4, 243–56 (1999).

Hadamard J (1893) Bull Sci Math 17:240–248

Google Scholar 

Hartmann SR, Hahn EL (1962) Nuclear Double Resonance in the Rotating Frame. Phys Rev 128:2042–2053

Article  ADS  MATH  Google Scholar 

Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 1969(96):205–209

ADS  Google Scholar 

Hing AW, Vega S, Schaefer J (1993) Measurement of Heteronuclear Dipolar Coupling by Transferred-Echo Double-Resonance NMR. J Magn Reson, Ser A 103:151–162

Article  ADS  Google Scholar 

Iwahara J, Jung YS, Clore GM (2007) Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation. J Am Chem Soc 129:2971–2980

Article  Google Scholar 

Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C, (15)N-labeled solids. J Am Chem Soc 124:10728–10742

Article  MATH  Google Scholar 

Jehle S, Rehbein K, Diehl A, van Rossum BJ (2006) Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines. J Magn Reson 183:324–328

Article  ADS  Google Scholar 

Kupce E, Freeman R (2003) Two-dimensional Hadamard spectroscopy. J Magn Reson 162:300–310

Article  ADS  MATH  Google Scholar 

Lalli D, Turano P (2013) Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage. Acc Chem Res 46:2676–2685

Article  MATH  Google Scholar 

Lee W, Rahimi M, Lee Y, Chiu A (2021) POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules. Bioinformatics 37:3041–3042

Article  MATH  Google Scholar 

Lends A et al (2018) Direct amide (15)N to (13)C transfers for solid-state assignment experiments in deuterated proteins. J Biomol NMR 72:69–78

Article  Google Scholar 

Li S, Hong M (2011) Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR. J Am Chem Soc 133:1534–1544

Article  MATH  Google Scholar 

Li S, Su Y, Luo W, Hong M (2010) Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy. J Phys Chem B 114:4063–4069

Article  MATH  Google Scholar 

Li, J., Sae Her, A. & Traaseth, N.J. Site-specific resolution of anionic residues in proteins using solid-state NMR spectroscopy. J Biomol NMR 74, 355–363 (2020).

Marion, D.a.I., M. and Tschudin, R. and Bax, A. Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. Journal of Magnetic Resonance 85, 393–399 (1989).

Matlahov I, van der Wel PCA (2018) Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 148:123–135

Article  Google Scholar 

Movellan KT, Dervisoglu R, Becker S, Andreas LB (2021) Pore-Bound Water at the Key Residue Histidine 37 in Influenza A M2. Angew Chem Int Ed Engl 60:24075–24079

Article  Google Scholar 

Nguyen D, Chen C, Pettitt BM, Iwahara J (2019) NMR Methods for Characterizing the Basic Side Chains of Proteins: Electrostatic Interactions, Hydrogen Bonds, and Conformational Dynamics. Methods Enzymol 615:285–332

Article  Google Scholar 

Paulson EK et al (2003) Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. J Am Chem Soc 125:15831–15836

Article  MATH  Google Scholar 

Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

Article  MATH  Google Scholar 

Sergeyev IV, Fritzsching K, Rogawski R, McDermott A (2024) Resolution in cryogenic solid state NMR: Challenges and solutions. Protein Sci 33:e4803

Article  Google Scholar 

Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

ADS  Google Scholar 

Su Y, Andreas L, Griffin RG (2015) Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection. Annu Rev Biochem 84:465–497

Article  MATH  Google Scholar 

Theil EC (2011) Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Curr Opin Chem Biol 15:304–311

Article  Google Scholar 

Vinod Chandran C, Madhu PK, Kurur ND, Brauniger T (2008) Swept-frequency two-pulse phase modulation (SWf-TPPM) sequences with linear sweep profile for heteronuclear decoupling in solid-state NMR. Magn Reson Chem 46:943–947

Article  Google Scholar 

Williams JK, Schmidt-Rohr K, Hong M (2015) Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins. Solid State Nucl Magn Reson 72:118–126

Article  ADS  Google Scholar 

Zadorozhnyi R et al (2021) Determination of Histidine Protonation States in Proteins by Fast Magic Angle Spinning NMR. Front Mol Biosci 8:767040

Article  MATH  Google Scholar 

Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172

Article  ADS  MATH  Google Scholar 

Comments (0)

No login
gif