mTORC1 regulates the proliferation of SOX9+ porcine skin-derived stem cells (pSDSCs) by promoting S6K phosphorylation

Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong HA, Lai K, Ahn R, Corbin K, Lowe MM, Scharschmidt TC, Taravati K, Tan MR, Ricardo-Gonzalez RR, Nosbaum A, Bertolini M, Liao W, Nestle FO, Paus R, Cotsarelis G, Abbas AK, Rosenblum MD (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169(6):1119-1129e111. https://doi.org/10.1016/j.cell.2017.05.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bataille A, Leschiera R, L’Herondelle K, Pennec JP, Le Goux N, Mignen O, Sakka M, Plee-Gautier E, Brun C, Oddos T, Carre JL, Misery L, Lebonvallet N (2020) In vitro differentiation of human skin-derived cells into functional sensory neurons-like. Cells 9(4):1000. https://doi.org/10.3390/cells9041000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Battaglioni S, Benjamin D, Walchli M, Maier T, Hall MN (2022) mTOR substrate phosphorylation in growth control. Cell 185(11):1814–1836. https://doi.org/10.1016/j.cell.2022.04.013

Article  CAS  PubMed  Google Scholar 

Cable J, Fuchs E, Weissman I, Jasper H, Glass D, Rando TA, Blau H, Debnath S, Oliva A, Park S, Passegué E, Kim C, Krasnow MA (2019) Adult stem cells and regenerative medicine—a symposium report. Ann NY Acad Sci 1462(1):27–36. https://doi.org/10.1111/nyas.14243

Article  PubMed  Google Scholar 

Chatterjee A, Mukhopadhyay S, Tung K, Patel D, Foster DA (2015) Rapamycin-induced G1 cell cycle arrest employs both TGF-beta and Rb pathways. Cancer Lett 360(2):134–140. https://doi.org/10.1016/j.canlet.2015.01.043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S, Lee G, Pickering BF, Jang C, Park JH, He L, Mathur L, Kim SS, Jung S, Tang HW, Monette S, Rabinowitz JD, Perrimon N, Jaffrey SR, Blenis J (2021) mTORC1 promotes cell growth via m(6)A-dependent mRNA degradation. Mol Cell 81(10):2064-2075e2068. https://doi.org/10.1016/j.molcel.2021.03.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng CY, Lv M, Luo BH, Zhao SZ, Mo ZC, Xie YJ (2021) The role of the PI3K/AKT/mTOR signalling pathway in male reproduction. Curr Mol Med 21(7):539–548. https://doi.org/10.2174/1566524020666201203164910

Article  CAS  PubMed  Google Scholar 

Dyce PW, Tenn N, Kidder GM (2018) Retinoic acid enhances germ cell differentiation of mouse skin-derived stem cells. J Ovarian Res 11(1):19. https://doi.org/10.1186/s13048-018-0390-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu W, Hall MN (2020) Regulation of mTORC2 signaling. Genes (Basel) 11(9):1045. https://doi.org/10.3390/genes11091045

Article  CAS  PubMed  Google Scholar 

Ge W, Cheng SF, Dyce PW, De Felici M, Shen W (2016) Skin-derived stem cells as a source of primordial germ cell- and oocyte-like cells. Cell Death Dis 7(11):e2471. https://doi.org/10.1038/cddis.2016.366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gebraad A, Ohlsbom R, Miettinen JJ, Emeh P, Pakarinen TK, Manninen M, Eskelinen A, Kuismanen K, Slipicevic A, Lehmann F, Nupponen NN, Heckman CA, Miettinen S (2022) Growth response and differentiation of bone marrow-derived mesenchymal stem/stromal cells in the presence of novel multiple myeloma drug melflufen. Cells 11(9):1574. https://doi.org/10.3390/cells11091574

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han J, Yuan P, Yang H, Zhang J, Soh BS, Li P, Lim SL, Cao S, Tay J, Orlov YL, Lufkin T, Ng H-H, Tam W-L, Lim B (2010) Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463(7284):1096–1100. https://doi.org/10.1038/nature08735

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ismail HM, Myronova O, Tsuchiya Y, Niewiarowski A, Tsaneva I, Gout I (2013) Identification of the general transcription factor Yin Yang 1 as a novel and specific binding partner for S6 kinase 2. Cell Signal 25(5):1054–1063. https://doi.org/10.1016/j.cellsig.2013.02.002

Article  CAS  PubMed  Google Scholar 

Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128. https://doi.org/10.1038/ncb1183

Article  CAS  PubMed  Google Scholar 

Jiang H, Du M, Li Y, Zhou T, Lei J, Liang H, Zhong Z, Al-Lamki RS, Jiang M, Yang J (2022) ID proteins promote the survival and primed-to-naive transition of human embryonic stem cells through TCF3-mediated transcription. Cell Death Dis. https://doi.org/10.1038/s41419-022-04958-8

Article  PubMed  PubMed Central  Google Scholar 

Juppner J, Mubeen U, Leisse A, Caldana C, Wiszniewski A, Steinhauser D, Giavalisco P (2018) The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Plant J 93(2):355–376. https://doi.org/10.1111/tpj.13787

Article  CAS  PubMed  Google Scholar 

Liu WX, Tan SJ, Wang YF, Zhang FL, Feng YQ, Ge W, Dyce PW, Reiter RJ, Shen W, Cheng SF (2022) Melatonin promotes the proliferation of primordial germ cell-like cells derived from porcine skin-derived stem cells: a mechanistic analysis. J Pineal Res 73(4):e12833. https://doi.org/10.1111/jpi.12833

Article  CAS  PubMed  Google Scholar 

Liu W-X, Li C-X, Xie X-X, Ge W, Qiao T, Sun X-F, Shen W, Cheng S-F (2023) Transcriptomic landscape reveals germline potential of porcine skin-derived multipotent dermal fibroblast progenitors. Cell Mol Life Sci. https://doi.org/10.1007/s00018-023-04869-7

Article  PubMed  PubMed Central  Google Scholar 

Luo Y, Tian W, Kang D, Wu L, Tang H, Wang S, Zhang C, Xie Y, Zhang Y, Xie J, Deng X, Zou H, Wu H, Lin H, Wei W (2024) RNA modification gene WDR4 facilitates tumor progression and immunotherapy resistance in breast cancer. J Adv Res. https://doi.org/10.1016/j.jare.2024.06.029

Article  PubMed  PubMed Central  Google Scholar 

Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P (2022) Overview of research into mTOR inhibitors. Molecules 27(16):5295. https://doi.org/10.3390/molecules27165295

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278(18):15461–15464. https://doi.org/10.1074/jbc.C200665200

Article  CAS  PubMed  Google Scholar 

Ou X, Tan Y, Xie J, Yuan J, Deng X, Shao R, Song C, Cao X, Xie X, He R, Li Y, Tang H (2024) Methylation of GPRC5A promotes liver metastasis and docetaxel resistance through activating mTOR signaling pathway in triple negative breast cancer. Drug Resist Update 73:101063. https://doi.org/10.1016/j.drup.2024.101063

Article  CAS  Google Scholar 

Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M (2023) Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 8(1):375. https://doi.org/10.1038/s41392-023-01608-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinto N, Carrington B, Dietrich C, Sinha R, Aguilar C, Chen T, Aggarwal P, Kango-Singh M, Singh SR (2018) Markers and methods to study adult midgut stem cells. Methods Mol Biol 1842:123–137. https://doi.org/10.1007/978-1-4939-8697-2_9

Article  CAS  PubMed  Google Scholar 

Popova NV, Jucker M (2021) The role of mTOR signaling as a therapeutic target in cancer. Int J Mol Sci 22(4):1743. https://doi.org/10.3390/ijms22041743

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu Q, Liu L, Cui Y, Liu H, Yi J, Bing W, Liu C, Jiang D, Bi Y (2022) miR-126-3p containing exosomes derived from human umbilical cord mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat model of premature ovarian failure. Stem Cell Res Ther 13(1):352.

Comments (0)

No login
gif