A simple immunohistochemical method for perinatal mammalian ovaries revealed different kinetics of oocyte apoptosis caused by DNA damage and asynapsis

Baudat F, Manova K, Yuen JP et al (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998. https://doi.org/10.1016/S1097-2765(00)00098-8

Article  CAS  PubMed  Google Scholar 

Bolcun-Filas E, Schimenti JC (2012) Chapter Five - Genetics of meiosis and recombination in mice. In: Jeon KW (ed) Int Rev Cell Mol Biol. Academic Press, pp 179–227

Google Scholar 

Bristol-Gould SK, Kreeger PK, Selkirk CG et al (2006) Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool. Dev Biol 298:132–148. https://doi.org/10.1016/j.ydbio.2006.06.025

Article  CAS  PubMed  Google Scholar 

Burkhardt S, Borsos M, Szydlowska A et al (2016) Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr Biol 26:678–685. https://doi.org/10.1016/j.cub.2015.12.073

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carofiglio F, Inagaki A, de Vries S et al (2013) SPO11-independent DNA repair foci and their role in meiotic silencing. PLoS Genet 9:e1003538. https://doi.org/10.1371/journal.pgen.1003538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Giacomo M, Barchi M, Baudat F et al (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA 102:737–742. https://doi.org/10.1073/pnas.0406212102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Findlay JK, Hutt KJ, Hickey M, Anderson RA (2015) How is the number of primordial follicles in the ovarian reserve established? Biol Reprod 93:111. https://doi.org/10.1095/biolreprod.115.133652

Article  CAS  PubMed  Google Scholar 

Huppertz B, Frank H-G, Kaufmann P (1999) The apoptosis cascade — morphological and immunohistochemical methods for its visualization. Anat Embryol 200:1–18. https://doi.org/10.1007/s004290050254

Article  CAS  Google Scholar 

Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

Article  CAS  PubMed  Google Scholar 

Kaur S, Kurokawa M (2023) Regulation of oocyte apoptosis: A view from gene knockout mice. Int J Mol Sci 24:1345. https://doi.org/10.3390/ijms24021345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kogo H, Tsutsumi M, Ohye T et al (2012a) HORMAD1-dependent checkpoint/surveillance mechanism eliminates asynaptic oocytes. Genes Cells 17:439–454. https://doi.org/10.1111/j.1365-2443.2012.01600.x

Article  CAS  PubMed  Google Scholar 

Kogo H, Tsutsumi M, Inagaki H et al (2012b) HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes Cells 17:897–912. https://doi.org/10.1111/gtc.12005

Article  CAS  PubMed  Google Scholar 

Lee J, Iwai T, Yokota T, Yamashita M (2003) Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 116:2781–2790. https://doi.org/10.1242/jcs.00495

Article  CAS  PubMed  Google Scholar 

McClellan KA, Gosden R, Taketo T (2003) Continuous loss of oocytes throughout meiotic prophase in the normal mouse ovary. Dev Biol 258:334–348. https://doi.org/10.1016/S0012-1606(03)00132-5

Article  CAS  PubMed  Google Scholar 

Mitra S, Kumar M, Sharma V et al (2010) Squash preparation: A reliable diagnostic tool in the intraoperative diagnosis of central nervous system tumors. J Cytol 27:81–85. https://doi.org/10.4103/0970-9371.71870

Article  PubMed  PubMed Central  Google Scholar 

Morita Y, Tilly JL (1999) Oocyte apoptosis: like sand through an hourglass. Dev Biol 213:1–17. https://doi.org/10.1006/dbio.1999.9344

Article  CAS  PubMed  Google Scholar 

Morohaku K, Hirao Y, Obata Y (2017) Differentiation of mouse primordial germ cells into functional oocytes in vitro. Ann Biomed Eng 45:1608–1619. https://doi.org/10.1007/s10439-017-1815-7

Article  PubMed  PubMed Central  Google Scholar 

Niu W, Spradling AC (2022) Mouse oocytes develop in cysts with the help of nurse cells. Cell 185:2576-2590.e12. https://doi.org/10.1016/j.cell.2022.05.001

Article  CAS  PubMed  Google Scholar 

Page J, Suja JA, Santos JL, Rufas JS (1998) Squash procedure for protein immunolocalization in meiotic cells. Chromosome Res 6:639–642. https://doi.org/10.1023/a:1009209628300

Article  CAS  PubMed  Google Scholar 

Pepling ME (2006) From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis 44:622–632. https://doi.org/10.1002/dvg.20258

Article  CAS  PubMed  Google Scholar 

Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234:339–351. https://doi.org/10.1006/dbio.2001.0269

Article  CAS  PubMed  Google Scholar 

Pittman DL, Cobb J, Schimenti KJ et al (1998) Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell 1:697–705. https://doi.org/10.1016/S1097-2765(00)80069-6

Article  CAS  PubMed  Google Scholar 

Ravindranathan R, Raveendran K, Papanikos F et al (2022) Chromosomal synapsis defects can trigger oocyte apoptosis without elevating numbers of persistent DNA breaks above wild-type levels. Nucleic Acids Res 50:5617–5634. https://doi.org/10.1093/nar/gkac355

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162:246–257. https://doi.org/10.1016/j.cell.2015.06.067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rinaldi VD, Bolcun-Filas E, Kogo H et al (2017) The DNA damage checkpoint eliminates mouse oocytes with chromosome synapsis failure. Mol Cell 67:1026-1036.e2. https://doi.org/10.1016/j.molcel.2017.07.027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues P, Limback D, McGinnis LK et al (2009) Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction 137:709–720. https://doi.org/10.1530/REP-08-0203

Article  CAS  PubMed  Google Scholar 

Subramanian VV, Hochwagen A (2014) The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 6:a016675. https://doi.org/10.1101/cshperspect.a016675

Article  PubMed  PubMed Central  Google Scholar 

Whittington NC, Wray S (2017) Suppression of red blood cell autofluorescence for immunocytochemistry on fixed embryonic mouse tissue. Curr Protoc Neurosci 81:2–288

Article  PubMed Central  Google Scholar 

Wojtasz L, Cloutier JM, Baumann M et al (2012) Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev 26:958–973. https://doi.org/10.1101/gad.187559.112

Article  CAS 

Comments (0)

No login
gif