Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater. 2017;29:1700996.
Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:8.
Article PubMed PubMed Central Google Scholar
Rahman AKMR, Amin MdN. Production routes analysis of PET agent 72As from alpha and proton induced reaction using different level density models. AIP Adv. 2023;13:095121.
Liu Z, Zhang Y, Sun G, Ouyang W, Wang S, Xu H, et al. Comparison of thulium laser resection of bladder tumors and conventional transurethral resection of bladder tumors for non-muscle-invasive bladder cancer. Urol Int. 2022;106:116–21.
Article CAS PubMed Google Scholar
Baglin CM. Nuclear data sheets for A = 167. Nucl Data Sheets. 2000;90:431–644.
Heinke R, Chevallay E, Chrysalidis K, Cocolios TE, Duchemin C, Fedosseev VN, et al. Efficient production of high specific activity thulium-167 at paul scherrer Institute and CERN-MEDICIS. Front Med. 2021;8: 712374.
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy – a review. EJNMMI Radiopharm Chem. 2019;4:27.
Article PubMed PubMed Central Google Scholar
Ando A, Ando I, Sakamoto K, Hiraki T, Hisada K, Takeshita M. Affinity of 167Tm-citrate for tumor and liver tissue. Eur J Nucl Med. 1983. https://doi.org/10.1007/BF00252943.
Tárkányi F, Hermanne A, Takács S, Király B, Spahn I, Ignatyuk AV. Experimental study of the excitation functions of proton induced nuclear reactions on 167Er for production of medically relevant 167Tm. Appl Radiat Isot. 2010;68:250–5.
Scholz KL, Sodd VJ, Blue JW. Production of Thulium- 167 for medical use by irradiation of letetium, hafnium, tantalum and tungsten with 590-MeV protons. Int J Appl Radiat Isot. 1976;27:263–6.
Article CAS PubMed Google Scholar
Rezaur Rahman AKM, Amin R. Production route analysis of a therapeutic radionuclide 177Lu. AIP Adv. 2022;12: 095115.
Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018;3:3.
Article PubMed PubMed Central Google Scholar
Kazakov AG, Babenya JS, Ekatova TY, Belyshev SS, Khankin VV, Kuznetsov AA, et al. Yields of photo-proton reactions on nuclei of nickel and separation of cobalt isotopes from irradiated targets. Molecules. 2022;27:1524.
Article CAS PubMed PubMed Central Google Scholar
Renaldin E, Dellepiane G, Braccini S, Sommerhalder A, Zhang H, Van Der Meulen NP, et al. Study of thulium-167 cyclotron production: a potential medically-relevant radionuclide. Front Chem. 2023;11:1288588.
Article CAS PubMed PubMed Central Google Scholar
Beyer G-J, Franke W-G, Hennig K, Johannsen BA, Khalkin VA, Kretzschmar M, et al. Comparative kinetic studies of simultaneously injected 167Tm- and 67Ga-Citrate in Normal and Tumour bearing mice. Int J Appl Radiat Isot. 1978;29:673–81.
Article CAS PubMed Google Scholar
Rahman AKMR. Neutron cross-sections for ^Mn in the energy range from 0.2 to 22 MeV. Turkish Journal of Physics [Internet]. 2012 [cited 2023 20th June]; Available from: https://journals.tubitak.gov.tr/physics/vol36/iss3/3
Rahman AKMR, Awal A. Production of 149Tb, 152Tb, 155Tb and 161Tb from gadolinium using different light-particle beams. J Radioanal Nucl Chem. 2020;323:731–40.
Koning AJ. TALYS: Comprehensive nuclear reaction modeling. AIP Conference Proceedings [Internet]. Santa Fe, New Mexico (USA): AIP; 2005 [cited 2024 14th March]. p. 1154–9. Available from: https://pubs.aip.org/aip/acp/article/769/1/1154-1159/946255
Koning AJ, Hilaire S, Duijvestijn MC. TALYS-1.0. ND2007 [Internet]. Nice, France: EDP Sciences; 2007 [cited 2024 14th March]. p. 058. Available from: http://nd2007.edpsciences.org/https://doi.org/10.1051/ndata:07767
Nasrabadi MN, Sepiani M. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes. Fethiye, Turkey; 2015 [cited 2024 Mar 14]. p. 020076. Available from: https://pubs.aip.org/aip/acp/article/583740
Rezaur Rahman AKM, Asif ZM. Excitation functions of 58Ni(n, charged particle) from threshold to 20 MeV using NLD models. Indian J Phys. 2021;95:1231–8.
Gilbert A, Cameron AGW. A composite nuclear-level density formula with shell corrections. Can J Phys. 1965;43:1446–96.
Dilg W, Schantl W, Vonach H, Uhl M. Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl Phys A. 1973;217:269–98.
Ignatyuk AV, Istekov KK, Smirenkin GN. The role of collective effects in the systematics of nuclear level densities. Sov J Nucl Phys (Engl Transl); (United States). 1979;29:450.
Ignatyuk AV, Weil JL, Raman S, Kahane S. Density of discrete levels in Sn 116. Phys Rev C. 1993;47:1504–13.
Goriely S, Tondeur F, Pearson JM. A HARTREE–FOCK NUCLEAR MASS TABLE. At Data Nucl Data Tables. 2001;77:311–81.
Kadenko IM, Plujko VA, Bondar BM, Gorbachenko OM, Leshchenko BYu, Solodovnyk KM, et al. Gamma-rays from nat-Sn and nat-C induced by fast neutrons. Nucl Phys At Energy. 2016;17:349–53.
Uddin MS, Scholten B, Basunia MS, Sudár S, Spellerberg S, Voyles AS, et al. Accurate determination of production data of the non-standard positron emitter 86 Y via the 86 Sr(p, n)-reaction. Radiochim Acta. 2020;108:747–56.
Cochran WG. The $\chi^2$ Test of Goodness of Fit. Ann Math Statist. 1952;23:315–45.
Pearson KX. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh Dublin Philosoph Magaz J Sci. 1900;50:157–75.
Brandt R, Ditlov VA, Dwivedi KK, Ensinger W, Ganssauge E, Shi-Lun G, et al. Interactions of relativistic heavy ions in thick heavy element targets and some unresolved problems. Phys Part Nuclei. 2008;39:259–85.
Li W, Wang X, Zhang X, Zhao S, Duan H, Xue J. Mechanism of the defect formation in supported graphene by energetic heavy ion irradiation: the substrate effect. Sci Rep. 2015;5:9935.
Article CAS PubMed PubMed Central Google Scholar
Rezki M, Kambali I, Hidayanto E, Arianto F. Comparison of 192Os(p, n)192Ir and 192Os(d,2n)192Ir nuclear reactions for 192Ir production. Atom Indo. 2020;46:41.
Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J Nucl Sci Technol. 2018;55:684–90.
Boudard A, Cugnon J, David J-C, Leray S, Mancusi D. New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C. 2013;87: 014606.
Kormazeva ES, Khomenko IA, Unezhev VN, Aliev RA. New data on Ho(α, x) reactions and the aspects of 167Tm and 165Er production for medical use. J Radioanal Nucl Chem. 2022;331:4259–69.
Usman AR, Khandaker MU, Haba H, Otuka N, Murakami M. Production cross sections of thulium radioisotopes for alpha-particle induced reactions on holmium. Nucl Instrum Methods Phys Res Sect B. 2020;469:42–8.
Tárkányi F, Hermanne A, Király B, Takács S, Ignatyuk AV. Study of excitation functions of alpha-particle induced nuclear reactions on holmium for 167Tm production. Appl Radiat Isot. 2010;68:404–11.
Martin GC, Pilger RC. Absolute cross sections and excitation functions for α-particle-induced reactions of 165Ho, 164Er, 166Er and 167Er. Nucl Phys. 1966;89:481–96.
Singh N, Agarwal S, Rama Rao J. Comparative study of preequilibrium models and mechanism of alpha particle induced reactions. J Phys Soc Jpn. 1990;59:3916–24.
Gadkari MS, Patel HB, Shah DJ, Singh NL. Study of preequilibrium decay in (α, x n) reactions in holmium up to 70 MeV. Phys Scr. 1997;55:147–51.
Comments (0)