Beniya, A. et al. CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters. Nat. Commun. 11, 1888 (2020).
Article CAS PubMed PubMed Central Google Scholar
Crampton, A. S. et al. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters. Nat. Commun. 7, 10389 (2016).
Article PubMed PubMed Central Google Scholar
Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).
Article CAS PubMed Google Scholar
Watanabe, Y. & Isomura, N. A new experimental setup for high-pressure catalytic activity measurements on surface deposited mass-selected Pt clusters. J. Vac. Sci. Technol. A 27, 1153–1158 (2009).
Zheng, Y.-R. et al. Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nat. Energy 7, 55–64 (2022).
Bronstein, L. M. & Shifrina, Z. B. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem. Rev. 111, 5301–5344 (2011).
Article CAS PubMed Google Scholar
Imaoka, T. et al. Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst? J. Am. Chem. Soc. 135, 13089–13095 (2013).
Article CAS PubMed Google Scholar
Imaoka, T., Kitazawa, H., Chun, W.-J. & Yamamoto, K. Finding the most catalytically active platinum clusters with low atomicity. Angew. Chem. Int. Ed. 54, 9810–9815 (2015).
Eulenstein, A. R. et al. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4−. Nat. Chem. 13, 149–155 (2021).
Article CAS PubMed Google Scholar
Lichtenberger, N. et al. Main group metal–actinide magnetic coupling and structural response upon U4+ inclusion into Bi, Tl/Bi, or Pb/Bi cages. J. Am. Chem. Soc. 138, 9033–9036 (2016).
Article CAS PubMed Google Scholar
Min, X. et al. All-metal antiaromaticity in Sb4-type lanthanocene anions. Angew. Chem. Int. Ed. 55, 5531–5535 (2016).
Schütz, M. et al. Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms. Chem. Sci. 12, 6588–6599 (2021).
Article PubMed PubMed Central Google Scholar
Weßing, J. et al. The Mackay-type cluster [Cu43Al12](Cp*)12: open-shell 67-electron superatom with emerging metal-like electronic structure. Angew. Chem. Int. Ed. 57, 14630–14634 (2018).
Nguyen, T.-A. D. et al. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 137, 13319–13324 (2015).
Article CAS PubMed Google Scholar
Schütz, M., Gemel, C., Klein, W., Fischer, R. A. & Fässler, T. F. Intermetallic phases meet intermetalloid clusters. Chem. Soc. Rev. 50, 8496–8510 (2021).
Fischer, R. A. Organometallic superatom complexes. Bull. Jpn. Soc. Coord. Chem. 81, 20–38 (2023).
Butovskii, M. V. et al. Molecules containing rare-earth atoms solely bonded by transition metals. Nat. Chem. 2, 741–744 (2010).
Article CAS PubMed Google Scholar
Dabringhaus, P. & Krossing, I. From mixed group 13 cations [M(AlCp*)3]+ (M = Ga/In/Tl) to an Al4+ cluster. Chem. Sci. 13, 12078–12086 (2022).
Article CAS PubMed PubMed Central Google Scholar
Buchin, B. et al. ‘Naked’ Ga+ and In+ as pure acceptor ligands: structure and bonding of [GaPt(GaCp*)4][BArF]. Angew. Chem. Int. Ed. 45, 5207–5210 (2006).
Halbherr, M., Bollermann, T., Gemel, C. & Fischer, R. A. Selective oxidative cleavage of Cp* from coordinated GaCp*: naked Ga+ in [GaNi(GaCp*)4]+ and [(μ2-Ga)nM3(GaCp*)6]n+. Angew. Chem. Int. Ed. 49, 1878–1881 (2010).
Sánchez, R. H., Willis, A. M., Zheng, S.-L. & Betley, T. A. Synthesis of well-defined bicapped octahedral iron clusters [(trenL)2Fe8(PMe2Ph)2]n (n = 0, −1). Angew. Chem. Int. Ed. 54, 12009–12013 (2015).
Cadenbach, T. et al. Twelve one-electron ligands coordinating one metal center: structure and bonding of [Mo(ZnCH3)9(ZnCp*)3]. Angew. Chem. Int. Ed. 47, 9150–9154 (2008).
Muhr, M. et al. Formation of a propeller-shaped Ni4Ga3 cluster supported by transmetalation of Cp* from Ga to Ni. Inorg. Chem. 59, 5086–5093 (2020).
Article CAS PubMed Google Scholar
Bühler, R. et al. Photochemically generated reactive sites at ruthenium/gallium complexes: catalysis vs. cluster growth. Dalton Trans. 52, 10905–10910 (2023).
Muhr, M. et al. C−H and Si−H activation reactions at Ru/Ga complexes: a combined experimental and theoretical case study on the Ru−Ga bond. Chem. Eur. J. 28, e202200887 (2022).
Article CAS PubMed Google Scholar
Steinke, T., Gemel, C., Cokoja, M., Winter, M. & Fischer, R. A. AlCp* as a directing ligand: C−H and Si−H bond activation at the reactive intermediate [Ni(AlCp*)3]†. Angew. Chem. Int. Ed. 43, 2299–2302 (2004).
Cadenbach, T. et al. Substituent-free gallium by hydrogenolysis of coordinated GaCp*: synthesis and structure of highly fluxional [Ru2(Ga)(GaCp*)7(H)3]. Angew. Chem. Int. Ed. 48, 3872–3876 (2009).
Martínez-Prieto, L. M. & Chaudret, B. Organometallic ruthenium nanoparticles: synthesis, surface chemistry, and insights into ligand coordination. Acc. Chem. Res. 51, 376–384 (2018).
Banh, H. et al. Embryonic brass: pseudo two electron Cu/Zn clusters. Chem. Sci. 9, 8906–8913 (2018).
Article CAS PubMed PubMed Central Google Scholar
Freitag, K. et al. Molecular brass: Cu4Zn4, a ligand protected superatom cluster. Chem. Commun. 50, 8681–8684 (2014).
Freitag, K. et al. The σ-aromatic clusters [Zn3]+ and [Zn2Cu]: embryonic brass. Angew. Chem. Int. Ed. 54, 4370–4374 (2015).
Schütz, M. et al. Contrasting structure and bonding of a copper-rich and a zinc-rich intermetalloid Cu/Zn cluster. Inorg. Chem. 59, 9077–9085 (2020).
Halder, A. et al. CO2 methanation on Cu-cluster decorated zirconia supports with different morphology: a combined experimental in situ GIXANES/GISAXS, ex situ XPS and theoretical DFT study. ACS Catal. 11, 6210–6224 (2021).
Iyemperumal, S. K. & Deskins, N. A. Activation of CO2 by supported Cu clusters. Phys. Chem. Chem. Phys. 19, 28788–28807 (2017).
Article CAS PubMed Google Scholar
Liu, C., He, H., Zapol, P. & Curtiss, L. A. Computational studies of electrochemical CO2 reduction on subnanometer transition metal clusters. Phys. Chem. Chem. Phys. 16, 26584–26599 (2014).
Article CAS PubMed Google Scholar
López-Caballero, P., Hauser, A. W. & Pilar de Lara-Castells, M. Exploring the catalytic properties of unsupported and TiO2-supported Cu5 clusters: CO2 decomposition to CO and CO2 photoactivation. J. Phys. Chem. C 123, 23064–23074 (2019).
Comments (0)