A living library concept to capture the dynamics and reactivity of mixed-metal clusters for catalysis

Beniya, A. et al. CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters. Nat. Commun. 11, 1888 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crampton, A. S. et al. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters. Nat. Commun. 7, 10389 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).

Article  CAS  PubMed  Google Scholar 

Watanabe, Y. & Isomura, N. A new experimental setup for high-pressure catalytic activity measurements on surface deposited mass-selected Pt clusters. J. Vac. Sci. Technol. A 27, 1153–1158 (2009).

Article  CAS  Google Scholar 

Zheng, Y.-R. et al. Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nat. Energy 7, 55–64 (2022).

Article  CAS  Google Scholar 

Bronstein, L. M. & Shifrina, Z. B. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem. Rev. 111, 5301–5344 (2011).

Article  CAS  PubMed  Google Scholar 

Imaoka, T. et al. Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst? J. Am. Chem. Soc. 135, 13089–13095 (2013).

Article  CAS  PubMed  Google Scholar 

Imaoka, T., Kitazawa, H., Chun, W.-J. & Yamamoto, K. Finding the most catalytically active platinum clusters with low atomicity. Angew. Chem. Int. Ed. 54, 9810–9815 (2015).

Article  CAS  Google Scholar 

Eulenstein, A. R. et al. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4−. Nat. Chem. 13, 149–155 (2021).

Article  CAS  PubMed  Google Scholar 

Lichtenberger, N. et al. Main group metal–actinide magnetic coupling and structural response upon U4+ inclusion into Bi, Tl/Bi, or Pb/Bi cages. J. Am. Chem. Soc. 138, 9033–9036 (2016).

Article  CAS  PubMed  Google Scholar 

Min, X. et al. All-metal antiaromaticity in Sb4-type lanthanocene anions. Angew. Chem. Int. Ed. 55, 5531–5535 (2016).

Article  CAS  Google Scholar 

Schütz, M. et al. Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms. Chem. Sci. 12, 6588–6599 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Weßing, J. et al. The Mackay-type cluster [Cu43Al12](Cp*)12: open-shell 67-electron superatom with emerging metal-like electronic structure. Angew. Chem. Int. Ed. 57, 14630–14634 (2018).

Article  Google Scholar 

Nguyen, T.-A. D. et al. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 137, 13319–13324 (2015).

Article  CAS  PubMed  Google Scholar 

Schütz, M., Gemel, C., Klein, W., Fischer, R. A. & Fässler, T. F. Intermetallic phases meet intermetalloid clusters. Chem. Soc. Rev. 50, 8496–8510 (2021).

Article  PubMed  Google Scholar 

Fischer, R. A. Organometallic superatom complexes. Bull. Jpn. Soc. Coord. Chem. 81, 20–38 (2023).

Article  Google Scholar 

Butovskii, M. V. et al. Molecules containing rare-earth atoms solely bonded by transition metals. Nat. Chem. 2, 741–744 (2010).

Article  CAS  PubMed  Google Scholar 

Dabringhaus, P. & Krossing, I. From mixed group 13 cations [M(AlCp*)3]+ (M = Ga/In/Tl) to an Al4+ cluster. Chem. Sci. 13, 12078–12086 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchin, B. et al. ‘Naked’ Ga+ and In+ as pure acceptor ligands: structure and bonding of [GaPt(GaCp*)4][BArF]. Angew. Chem. Int. Ed. 45, 5207–5210 (2006).

Article  CAS  Google Scholar 

Halbherr, M., Bollermann, T., Gemel, C. & Fischer, R. A. Selective oxidative cleavage of Cp* from coordinated GaCp*: naked Ga+ in [GaNi(GaCp*)4]+ and [(μ2-Ga)nM3(GaCp*)6]n+. Angew. Chem. Int. Ed. 49, 1878–1881 (2010).

Sánchez, R. H., Willis, A. M., Zheng, S.-L. & Betley, T. A. Synthesis of well-defined bicapped octahedral iron clusters [(trenL)2Fe8(PMe2Ph)2]n (n = 0, −1). Angew. Chem. Int. Ed. 54, 12009–12013 (2015).

Article  Google Scholar 

Cadenbach, T. et al. Twelve one-electron ligands coordinating one metal center: structure and bonding of [Mo(ZnCH3)9(ZnCp*)3]. Angew. Chem. Int. Ed. 47, 9150–9154 (2008).

Article  CAS  Google Scholar 

Muhr, M. et al. Formation of a propeller-shaped Ni4Ga3 cluster supported by transmetalation of Cp* from Ga to Ni. Inorg. Chem. 59, 5086–5093 (2020).

Article  CAS  PubMed  Google Scholar 

Bühler, R. et al. Photochemically generated reactive sites at ruthenium/gallium complexes: catalysis vs. cluster growth. Dalton Trans. 52, 10905–10910 (2023).

Article  PubMed  Google Scholar 

Muhr, M. et al. C−H and Si−H activation reactions at Ru/Ga complexes: a combined experimental and theoretical case study on the Ru−Ga bond. Chem. Eur. J. 28, e202200887 (2022).

Article  CAS  PubMed  Google Scholar 

Steinke, T., Gemel, C., Cokoja, M., Winter, M. & Fischer, R. A. AlCp* as a directing ligand: C−H and Si−H bond activation at the reactive intermediate [Ni(AlCp*)3]†. Angew. Chem. Int. Ed. 43, 2299–2302 (2004).

Article  CAS  Google Scholar 

Cadenbach, T. et al. Substituent-free gallium by hydrogenolysis of coordinated GaCp*: synthesis and structure of highly fluxional [Ru2(Ga)(GaCp*)7(H)3]. Angew. Chem. Int. Ed. 48, 3872–3876 (2009).

Article  CAS  Google Scholar 

Martínez-Prieto, L. M. & Chaudret, B. Organometallic ruthenium nanoparticles: synthesis, surface chemistry, and insights into ligand coordination. Acc. Chem. Res. 51, 376–384 (2018).

Article  PubMed  Google Scholar 

Banh, H. et al. Embryonic brass: pseudo two electron Cu/Zn clusters. Chem. Sci. 9, 8906–8913 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freitag, K. et al. Molecular brass: Cu4Zn4, a ligand protected superatom cluster. Chem. Commun. 50, 8681–8684 (2014).

Article  CAS  Google Scholar 

Freitag, K. et al. The σ-aromatic clusters [Zn3]+ and [Zn2Cu]: embryonic brass. Angew. Chem. Int. Ed. 54, 4370–4374 (2015).

Article  CAS  Google Scholar 

Schütz, M. et al. Contrasting structure and bonding of a copper-rich and a zinc-rich intermetalloid Cu/Zn cluster. Inorg. Chem. 59, 9077–9085 (2020).

Article  PubMed  Google Scholar 

Halder, A. et al. CO2 methanation on Cu-cluster decorated zirconia supports with different morphology: a combined experimental in situ GIXANES/GISAXS, ex situ XPS and theoretical DFT study. ACS Catal. 11, 6210–6224 (2021).

Article  CAS  Google Scholar 

Iyemperumal, S. K. & Deskins, N. A. Activation of CO2 by supported Cu clusters. Phys. Chem. Chem. Phys. 19, 28788–28807 (2017).

Article  CAS  PubMed  Google Scholar 

Liu, C., He, H., Zapol, P. & Curtiss, L. A. Computational studies of electrochemical CO2 reduction on subnanometer transition metal clusters. Phys. Chem. Chem. Phys. 16, 26584–26599 (2014).

Article  CAS  PubMed  Google Scholar 

López-Caballero, P., Hauser, A. W. & Pilar de Lara-Castells, M. Exploring the catalytic properties of unsupported and TiO2-supported Cu5 clusters: CO2 decomposition to CO and CO2 photoactivation. J. Phys. Chem. C 123, 23064–23074 (2019).

Comments (0)

No login
gif