Enantioselective synthesis of 2-substituted bicyclo[1.1.1]pentanes via sequential asymmetric imine addition of bicyclo[1.1.0]butanes and skeletal editing

Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).

Article  CAS  PubMed  Google Scholar 

Tsien, J., Hu, C., Merchant, R. R. & Qin, T. Three-dimensional saturated C(sp3)-rich bioisosteres for benzene. Nat. Rev. Chem. 8, 605–627 (2024).

Article  CAS  PubMed  Google Scholar 

Stepan, A. F. et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J. Med. Chem. 55, 3414–3424 (2012).

Article  CAS  PubMed  Google Scholar 

Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

Article  CAS  PubMed  Google Scholar 

Shire, B. R. & Anderson, E. A. Conquering the synthesis and functionalization of bicyclo[1.1.1]pentanes. JACS Au 3, 1539–1553 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garlets, Z. J. et al. Enantioselective C–H functionalization of bicyclo[1.1.1]pentanes. Nat. Catal. 3, 351–357 (2020).

Article  CAS  Google Scholar 

Wong, M. L. J., Sterling, A. J., Mousseau, J. J., Duarte, F. & Anderson, E. A. Direct catalytic asymmetric synthesis of α-chiral bicyclo[1.1.1]pentanes. Nat. Commun. 12, 1644 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong, W. et al. Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez, E. M. et al. O-, N- and C-bicyclopentylation using thianthrenium reagents. Nat. Synth. 2, 548–556 (2023).

Article  CAS  Google Scholar 

Yu, I. F. et al. Catalytic undirected borylation of tertiary C–H bonds in bicyclo[1.1.1]pentanes and bicyclo[2.1.1]hexanes. Nat. Chem. 15, 685–693 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, J. M., Measom, N. D., Murphy, J. A. & Poole, D. L. Bridge functionalisation of bicyclo[1.1.1]pentane derivatives. Angew. Chem. Int. Ed. 60, 24754–24769 (2021).

Article  CAS  Google Scholar 

Ma, X., Han, Y. & Bennett, D. J. Selective synthesis of 1-dialkylamino-2-alkylbicyclo-[1.1.1]pentanes. Org. Lett. 22, 9133–9138 (2020).

Article  CAS  PubMed  Google Scholar 

Zhao, J.-X. et al. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: long-sought-after mimetics for ortho/meta-substituted arenes. Proc. Natl Acad. Sci. USA 118, e2108881118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wright, B. A. et al. Skeletal editing approach to bridge-functionalized bicyclo[1.1.1]pentanes from azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 10960–10966 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates. Nat. Chem. 16, 285–293 (2024).

Article  CAS  PubMed  Google Scholar 

Applequist, D. E. & Wheeler, J. W. Synthesis of 1,3-disubstituted bicyclo[1.1.1]pentanes. Tetrahedron Lett. 18, 3411–3412 (1977).

Article  Google Scholar 

Bychek, R. & Mykhailiuk, P. K. A practical and scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes. Angew. Chem. Int. Ed. 61, e202205103 (2022).

Article  CAS  Google Scholar 

Garry, O. L. et al. Rapid access to 2-substituted bicyclo[1.1.1]pentanes. J. Am. Chem. Soc. 145, 3092–3100 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harwood, L. A. et al. Selective P450BM3 hydroxylation of cyclobutylamine and bicyclo[1.1.1]pentylamine derivatives: underpinning synthetic chemistry for drug discovery. J. Am. Chem. Soc. 145, 27767–27773 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golfmann, M. & Walker, J. C. L. Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis. Commun. Chem. 6, 9 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sujansky, S. J. & Ma, X. Reaction paradigms that leverage cycloaddition and ring strain to construction bicyclic aryl bioisosteres from bicyclo[1.1.0]butanes. Asian J. Org. Chem. 13, e202400045 (2024).

Article  CAS  Google Scholar 

Dhake, K. et al. Beyond bioisosteres: divergent synthesis of azabicyclohexanes and cyclobutenyl amines from bicyclobutanes. Angew. Chem. Int. Ed. 61, e202204719 (2022).

Article  CAS  Google Scholar 

Liang, Y., Paulus, F., Daniliuc, C. G. & Glorius, F. Catalytic formal [2π+2σ] cycloaddition of aldehydes with bicyclobutanes: expedient access to polysubstituted 2-oxabicyclo[2.1.1]hexanes. Angew. Chem. Int. Ed. 62, e202305043 (2023).

Article  CAS  Google Scholar 

Tang, L. et al. Silver-catalyzed dearomative [2π+2σ] cycloadditions of indoles with bicyclobutanes: access to indoline fused bicyclo[2.1.1]hexanes. Angew. Chem. Int. Ed. 62, e202310066 (2023).

Article  CAS  Google Scholar 

Ni, D. et al. Intermolecular formal cycloaddition of indoles with bicyclo[1.1.0]butanes by Lewis acid catalysis. Angew. Chem. Int. Ed. 62, e202308606 (2023).

Article  CAS  Google Scholar 

Radhoff, N., Daniliuc, C. G. & Studer, A. Lewis acid catalyzed formal (3+2)-cycloaddition of bicyclo[1.1.0]butanes with ketenes. Angew. Chem. Int. Ed. 62, e202304771 (2023).

Article  CAS  Google Scholar 

Zhang, J., Su, J.-Y., Zheng, H., Li, H. & Deng, W.-P. Eu(OTf)3-catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo-[1.1.0]butanes with nitrones: access to polysubstituted 2-oxa-3-azabicyclo[3.1.1]heptanes. Angew. Chem. Int. Ed. 63, e202318476 (2024).

Article  CAS  Google Scholar 

Liang, Y., Nematswerani, R., Daniliuc, C. G. & Glorius, F. Silver-enabled cycloaddition of bicyclobutanes with isocyanides for the synthesis of polysubstituted 3-azabicyclo[3.1.1]heptanes. Angew. Chem. Int. Ed. 63, e202402730 (2024).

Article  CAS  Google Scholar 

Yang, L., Wang, H., Lang, M., Wang, J. & Peng, S. B(C6F5)3-catalyzed formal (n + 3) (n = 5 and 6) cycloaddition of bicyclo[1.1.0]butanes to medium bicyclo[n.1.1]alkanes. Org. Lett. 26, 4104–4110 (2024).

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif