Identifying the Optimal Sampling Strategy for the Bayesian Estimation of Vancomycin AUC0–24 in Adult Hematologic Cancer Patients

Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18-55. https://doi.org/10.1093/cid/ciq146.

Article  PubMed  Google Scholar 

Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835–64.

Article  PubMed  Google Scholar 

Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56-93. https://doi.org/10.1093/cid/cir073.

Article  PubMed  Google Scholar 

Zimmer AJ, Freifeld AG. Optimal management of neutropenic fever in patients with cancer. JOP. 2019;15(1):19–24. https://doi.org/10.1200/JOP.18.00269.

Article  PubMed  Google Scholar 

Wingard JR, Hsu J, Hiemenz JW. Hematopoietic stem cell transplantation: an overview of infection risks and epidemiology. Hematol Oncol Clin North Am. 2011;25(1):101–16. https://doi.org/10.1016/j.hoc.2010.11.008.

Article  PubMed  Google Scholar 

Bury D, Ter Heine R, van de Garde EMW, Nijziel MR, Grouls RJ, Deenen MJ. The effect of neutropenia on the clinical pharmacokinetics of vancomycin in adults. Eur J Clin Pharmacol. 2019;75(7):921–8.

Article  CAS  PubMed  Google Scholar 

Buelga DS, del Mar Fernandez de Gatta M, Herrera EV, Dominguez-Gil A, García MJ. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrob Agents Chemother. 2005;49(12):4934–41. https://doi.org/10.1128/AAC.49.12.4934-4941.2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada A, Kariya M, Irie K, et al. Population pharmacokinetics of vancomycin in patients undergoing allogeneic hematopoietic stem-cell transplantation. J Clin Pharmacol. 2018;58(9):1140–9. https://doi.org/10.1002/jcph.1106.

Article  CAS  PubMed  Google Scholar 

Belabbas T, Yamada T, Egashira N, et al. Population pharmacokinetic model and dosing optimization of vancomycin in hematologic malignancies with neutropenia and augmented renal clearance. J Infect Chemother. 2023;29(4):391–400. https://doi.org/10.1016/j.jiac.2023.01.010.

Article  CAS  PubMed  Google Scholar 

Polasek TM, Rostami-Hodjegan A, Yim DS, et al. What does it take to make model-informed precision dosing common practice? Report from the 1st Asian symposium on precision dosing. AAPS J. 2019;21(2):17. https://doi.org/10.1208/s12248-018-0286-6.

Article  PubMed  Google Scholar 

Wicha SG, Märtson AG, Nielsen EI, et al. From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021;109(4):928–41. https://doi.org/10.1002/cpt.2202.

Article  CAS  PubMed  Google Scholar 

Le Blanc J, Projean D, Savignac S, et al. Toward model-based informed precision dosing of vancomycin in hematologic cancer patients: a first step. Clin Pharmacokinet. 2024;63(2):183–96. https://doi.org/10.1007/s40262-023-01329-0.

Article  CAS  PubMed  Google Scholar 

Uster DW, Wicha SG. Optimized sampling to estimate vancomycin drug exposure: comparison of pharmacometric and equation-based approaches in a simulation-estimation study. CPT Pharmacometr Syst Pharmacol. 2022;11(6):711–20.

Article  CAS  Google Scholar 

Oda K, Hashiguchi Y, Kimura T, et al. Performance of area under the concentration-time curve estimations of vancomycin with limited sampling by a newly developed web application. Pharm Res. 2021;38(4):637–46. https://doi.org/10.1007/s11095-021-03030-y.

Article  CAS  PubMed  Google Scholar 

Kim B, Hwang S, Heo E, et al. Evaluation of vancomycin TDM strategies: prediction and prevention of kidney injuries based on vancomycin TDM results. J Korean Med Sci. 2023. https://doi.org/10.3346/jkms.2023.38.e101.

Article  PubMed  PubMed Central  Google Scholar 

Hughes MSA, Lee T, Faldasz JD, Hughes JH. Impacts of age and BMI on vancomycin model choice in a Bayesian software: lessons from a very large multi-site retrospective study. Pharmacother J Hum Pharmacol Drug Ther. 2024;44(10):794–802. https://doi.org/10.1002/phar.4613.

Article  Google Scholar 

Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12. https://doi.org/10.1007/BF01060893.

Article  CAS  PubMed  Google Scholar 

Marsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: a review of population pharmacokinetic analyses. Clin Pharmacokinet. 2012;51(1):1–13.

Article  CAS  PubMed  Google Scholar 

Aljutayli A, Marsot A, Nekka F. An Update on Population Pharmacokinetic Analyses of Vancomycin. Part I In Adults Clin Pharmacokinet. 2020;59(6):671–98.

Article  PubMed  Google Scholar 

Shingde RV, Reuter SE, Graham GG, et al. Assessing the accuracy of two Bayesian forecasting programs in estimating vancomycin drug exposure. J Antimicrob Chemother. 2020;75(11):3293–302. https://doi.org/10.1093/jac/dkaa320.

Article  CAS  PubMed  Google Scholar 

Oda K, Yamada T, Matsumoto K, et al. Model-informed precision dosing of vancomycin for rapid achievement of target area under the concentration-time curve: a simulation study. Clin Transl Sci. 2023;16(11):2265–75. https://doi.org/10.1111/cts.13626.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif