Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest. 1992;90:1901–10.
Article CAS PubMed PubMed Central Google Scholar
Kronenberg D, Knight RR, Estorninho M, Ellis RJ, Kester MG, de Ru A, et al. Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill beta-cells. Diabetes. 2012;61:1752–9.
Article CAS PubMed PubMed Central Google Scholar
Skowera A, Ellis RJ, Varela-Calviño R, Arif S, Huang GC, Van-Krinks C, et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest. 2008;118:3390–402.
CAS PubMed PubMed Central Google Scholar
De Berardinis P, Londei M, Kahan M, Balsano F, Kontiainen S, Gale EA, et al. The majority of the activated T cells in the blood of insulin-dependent diabetes mellitus (IDDM) patients are CD4+. Clin Exp Immunol. 1988;73:255–9.
PubMed PubMed Central Google Scholar
Yagi H, Matsumoto M, Kunimoto K, Kawaguchi J, Makino S, Harada M. Analysis of the roles of CD4+ and CD8+ T cells in autoimmune diabetes of NOD mice using transfer to NOD athymic nude mice. Eur J Immunol. 1992;22:2387–93.
Article CAS PubMed Google Scholar
Whalen BJ, Greiner DL, Mordes JP, Rossini AA. Adoptive transfer of autoimmune diabetes mellitus to athymic rats: synergy of CD4+ and CD8+ T cells and prevention by RT6+ T cells. J Autoimmun. 1994;7:819–31.
Article CAS PubMed Google Scholar
Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.
Article CAS PubMed PubMed Central Google Scholar
Elizondo DM, Brandy NZD, da Silva RLL, de Moura TR, Ali J, Yang D, et al. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes. Sci Rep. 2020;10:4362.
Article CAS PubMed PubMed Central Google Scholar
Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, et al. Recent trends and advances in type 1 diabetes therapeutics: a comprehensive review. Eur J Cell Biol. 2023;102: 151329.
Article CAS PubMed Google Scholar
Wisel SA, Gardner JM, Roll GR, Harbell J, Freise CE, Feng S, et al. Pancreas-after-islet transplantation in nonuremic type 1 diabetes: a strategy for restoring durable insulin independence. Am J Transplant. 2017;17:2444–50.
Article CAS PubMed PubMed Central Google Scholar
Bellin MD, Barton FB, Heitman A, Harmon JV, Kandaswamy R, Balamurugan AN, et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant. 2012;12:1576–83.
Article CAS PubMed PubMed Central Google Scholar
Spiess Y, Smith MA, Vale W. Superfusion of dissociated pancreatic islet cells attached to Cytodex beads. Diabetes. 1982;31:189–93.
Article CAS PubMed Google Scholar
Gates RJ, Lazarus NR. Reversal of streptozotocin-induced diabetes in rats by intraperitoneal implantation of encapsulated neonatal rabbit pancreatic tissue. Lancet. 1977;2:1257–9.
Article CAS PubMed Google Scholar
Zhi ZL, Kerby A, King AJ, Jones PM, Pickup JC. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia. 2012;55:1081–90.
Article CAS PubMed Google Scholar
An D, Chiu A, Flanders JA, Song W, Shou D, Lu YC, et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc Natl Acad Sci U S A. 2018;115:E263–72.
Article CAS PubMed Google Scholar
Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation. 2010;90:1054–62.
Scharp DW, Swanson CJ, Olack BJ, Latta PP, Hegre OD, Doherty EJ, et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes. 1994;43:1167–70.
Article CAS PubMed Google Scholar
Muthyala S, Raj VR, Mohanty M, Mohanan PV, Nair PD. The reversal of diabetes in rat model using mouse insulin producing cells - a combination approach of tissue engineering and macroencapsulation. Acta Biomater. 2011;7:2153–62.
Article CAS PubMed Google Scholar
Yang HK, Ham DS, Park HS, Rhee M, You YH, Kim MJ, et al. Long-term Efficacy and biocompatibility of encapsulated islet transplantation with chitosan-coated alginate capsules in mice and canine models of diabetes. Transplantation. 2016;100:334–43.
Article CAS PubMed Google Scholar
Carlsson PO, Espes D, Sedigh A, Rotem A, Zimerman B, Grinberg H, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas betaAir to patients with type 1 diabetes mellitus. Am J Transplant. 2018;18:1735–44.
Article CAS PubMed PubMed Central Google Scholar
Rios PD, Skoumal M, Liu J, Youngblood R, Kniazeva E, Garcia AJ, et al. Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. Biotechnol Bioeng. 2018;115:2356–64.
Article CAS PubMed PubMed Central Google Scholar
Sempe P, Richard MF, Bach JF, Boitard C. Evidence of CD4+ regulatory T cells in the non-obese diabetic male mouse. Diabetologia. 1994;37:337–43.
Article CAS PubMed Google Scholar
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.
Article CAS PubMed Google Scholar
Kasprowicz DJ, Smallwood PS, Tyznik AJ, Ziegler SF. Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J Immunol. 2003;171:1216–23.
Article CAS PubMed Google Scholar
Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007;445:766–70.
Article CAS PubMed Google Scholar
Tritt M, Sgouroudis E, d’Hennezel E, Albanese A, Piccirillo CA. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes. 2008;57:113–23.
Article CAS PubMed Google Scholar
Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes. 2005;54:306–10.
Article CAS PubMed Google Scholar
Zendegui JG, Vasquez KM, Tinsley JH, Kessler DJ, Hogan ME. In vivo stability and kinetics of absorption and disposition of 3’ phosphopropyl amine oligonucleotides. Nucleic Acids Res. 1992;20:307–14.
Article CAS PubMed PubMed Central Google Scholar
Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199:1455–65.
Article CAS PubMed PubMed Central Google Scholar
Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199:1467–77.
Comments (0)