Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model

Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest. 1992;90:1901–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kronenberg D, Knight RR, Estorninho M, Ellis RJ, Kester MG, de Ru A, et al. Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill beta-cells. Diabetes. 2012;61:1752–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skowera A, Ellis RJ, Varela-Calviño R, Arif S, Huang GC, Van-Krinks C, et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest. 2008;118:3390–402.

CAS  PubMed  PubMed Central  Google Scholar 

De Berardinis P, Londei M, Kahan M, Balsano F, Kontiainen S, Gale EA, et al. The majority of the activated T cells in the blood of insulin-dependent diabetes mellitus (IDDM) patients are CD4+. Clin Exp Immunol. 1988;73:255–9.

PubMed  PubMed Central  Google Scholar 

Yagi H, Matsumoto M, Kunimoto K, Kawaguchi J, Makino S, Harada M. Analysis of the roles of CD4+ and CD8+ T cells in autoimmune diabetes of NOD mice using transfer to NOD athymic nude mice. Eur J Immunol. 1992;22:2387–93.

Article  CAS  PubMed  Google Scholar 

Whalen BJ, Greiner DL, Mordes JP, Rossini AA. Adoptive transfer of autoimmune diabetes mellitus to athymic rats: synergy of CD4+ and CD8+ T cells and prevention by RT6+ T cells. J Autoimmun. 1994;7:819–31.

Article  CAS  PubMed  Google Scholar 

Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elizondo DM, Brandy NZD, da Silva RLL, de Moura TR, Ali J, Yang D, et al. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes. Sci Rep. 2020;10:4362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, et al. Recent trends and advances in type 1 diabetes therapeutics: a comprehensive review. Eur J Cell Biol. 2023;102: 151329.

Article  CAS  PubMed  Google Scholar 

Wisel SA, Gardner JM, Roll GR, Harbell J, Freise CE, Feng S, et al. Pancreas-after-islet transplantation in nonuremic type 1 diabetes: a strategy for restoring durable insulin independence. Am J Transplant. 2017;17:2444–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellin MD, Barton FB, Heitman A, Harmon JV, Kandaswamy R, Balamurugan AN, et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant. 2012;12:1576–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spiess Y, Smith MA, Vale W. Superfusion of dissociated pancreatic islet cells attached to Cytodex beads. Diabetes. 1982;31:189–93.

Article  CAS  PubMed  Google Scholar 

Gates RJ, Lazarus NR. Reversal of streptozotocin-induced diabetes in rats by intraperitoneal implantation of encapsulated neonatal rabbit pancreatic tissue. Lancet. 1977;2:1257–9.

Article  CAS  PubMed  Google Scholar 

Zhi ZL, Kerby A, King AJ, Jones PM, Pickup JC. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia. 2012;55:1081–90.

Article  CAS  PubMed  Google Scholar 

An D, Chiu A, Flanders JA, Song W, Shou D, Lu YC, et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc Natl Acad Sci U S A. 2018;115:E263–72.

Article  CAS  PubMed  Google Scholar 

Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation. 2010;90:1054–62.

Article  PubMed  Google Scholar 

Scharp DW, Swanson CJ, Olack BJ, Latta PP, Hegre OD, Doherty EJ, et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes. 1994;43:1167–70.

Article  CAS  PubMed  Google Scholar 

Muthyala S, Raj VR, Mohanty M, Mohanan PV, Nair PD. The reversal of diabetes in rat model using mouse insulin producing cells - a combination approach of tissue engineering and macroencapsulation. Acta Biomater. 2011;7:2153–62.

Article  CAS  PubMed  Google Scholar 

Yang HK, Ham DS, Park HS, Rhee M, You YH, Kim MJ, et al. Long-term Efficacy and biocompatibility of encapsulated islet transplantation with chitosan-coated alginate capsules in mice and canine models of diabetes. Transplantation. 2016;100:334–43.

Article  CAS  PubMed  Google Scholar 

Carlsson PO, Espes D, Sedigh A, Rotem A, Zimerman B, Grinberg H, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas betaAir to patients with type 1 diabetes mellitus. Am J Transplant. 2018;18:1735–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rios PD, Skoumal M, Liu J, Youngblood R, Kniazeva E, Garcia AJ, et al. Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. Biotechnol Bioeng. 2018;115:2356–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sempe P, Richard MF, Bach JF, Boitard C. Evidence of CD4+ regulatory T cells in the non-obese diabetic male mouse. Diabetologia. 1994;37:337–43.

Article  CAS  PubMed  Google Scholar 

Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

Article  CAS  PubMed  Google Scholar 

Kasprowicz DJ, Smallwood PS, Tyznik AJ, Ziegler SF. Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J Immunol. 2003;171:1216–23.

Article  CAS  PubMed  Google Scholar 

Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007;445:766–70.

Article  CAS  PubMed  Google Scholar 

Tritt M, Sgouroudis E, d’Hennezel E, Albanese A, Piccirillo CA. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes. 2008;57:113–23.

Article  CAS  PubMed  Google Scholar 

Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes. 2005;54:306–10.

Article  CAS  PubMed  Google Scholar 

Zendegui JG, Vasquez KM, Tinsley JH, Kessler DJ, Hogan ME. In vivo stability and kinetics of absorption and disposition of 3’ phosphopropyl amine oligonucleotides. Nucleic Acids Res. 1992;20:307–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199:1455–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199:1467–77.

Article 

Comments (0)

No login
gif