Primary Graft Dysfunction after Heart Transplantation: Current Evidence and Implications for Clinical Practice

Monica M, Colvin JMS, Ahn YS, Handarova DK, Martinez AC, Kelsi A, Lindblad, Ajay K, Israni JJ. Synder. OPTN/SRTR 2022 Annual Data Report. Heart. https://www.hhs.gov.

Truby LK, DeRoo S, Spellman J, Jennings DL, Takeda K, Fine B, et al. Management of primary graft failure after heart transplantation: Preoperative risks, perioperative events, and postoperative decisions. Clin Transpl. 2019;33(6):e13557.

Article  Google Scholar 

Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2014;33(4):327–40.

Article  Google Scholar 

Buchan TA, Moayedi Y, Truby LK, Guyatt G, Posada JD, Ross HJ, et al. Incidence and impact of primary graft dysfunction in adult heart transplant recipients: a systematic review and meta-analysis. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2021;40(7):642–51.

Article  Google Scholar 

Moayedi Y, Truby LK, Foroutan F, Han J, Guzman J, Angleitner P, et al. The international consortium on primary graft dysfunction: redefining clinical risk factors in the contemporary era of heart transplantation. J Card Fail. 2024;30(6):805–15.

Article  CAS  PubMed  Google Scholar 

Segovia J, Cosio MD, Barcelo JM, Bueno MG, Pavia PG, Burgos R, et al. RADIAL: a novel primary graft failure risk score in heart transplantation. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2011;30(6):644–51.

Article  Google Scholar 

Cosio Carmena MD, Gomez Bueno M, Almenar L, Delgado JF, Arizon JM, Gonzalez Vilchez F, et al. Primary graft failure after heart transplantation: characteristics in a contemporary cohort and performance of the RADIAL risk score. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2013;32(12):1187–95.

Article  Google Scholar 

Benck L, Kransdorf EP, Emerson DA, Rushakoff J, Kittleson MM, Klapper EB, et al. Recipient and surgical factors trigger severe primary graft dysfunction after heart transplant. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2021;40(9):970–80.

Article  Google Scholar 

Servais A, Lundgren S, Bowman S, Stoller D, Burdorf A, Hyden M, et al. Preoperative amiodarone and primary graft dysfunction in heart transplantation. Ann Pharmacother. 2024;58(11):1099–104. https://doi.org/10.1177/10600280241232032.

Article  CAS  PubMed  Google Scholar 

Wright M, Takeda K, Mauro C, Jennings D, Kurlansky P, Han J, et al. Dose-dependent association between amiodarone and severe primary graft dysfunction in orthotopic heart transplantation. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2017;36(11):1226–33.

Article  Google Scholar 

Cooper LB, Mentz RJ, Edwards LB, Wilk AR, Rogers JG, Patel CB, et al. Amiodarone use in patients listed for heart transplant is associated with increased 1-year post-transplant mortality. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2017;36(2):202–10.

Article  Google Scholar 

Jennings DL, Vaishnavi Gadela N, Jaiswal A, Touch A, Baker WL. Pre-transplant amiodarone use does not affect long-term heart transplant survival. Pharmacotherapy. 2021;41(12):1024–32.

Article  CAS  PubMed  Google Scholar 

Truby LK, Takeda K, Topkara VK, Takayama H, Garan AR, Yuzefpolskaya M, et al. Risk of severe primary graft dysfunction in patients bridged to heart transplantation with continuous-flow left ventricular assist devices. J heart lung transplantation: official publication Int Soc Heart Transplantation. 2018.

Moayedi Y, Truby L, Fan C, Foroutan F, Henricksen E, Luikart H, et al. Validation of a machine learning primary graft dysfunction risk score in a contemporary heart transplant cohort: An analysis of the international consortium on PGD. J Heart Lung Transplantation. 2024;43:S67.

Article  Google Scholar 

Singh SSA, Dalzell JR, Berry C, Al-Attar N. Primary graft dysfunction after heart transplantation: a thorn amongst the roses. Heart Fail Rev. 2019;24(5):805–20.

Article  PubMed  PubMed Central  Google Scholar 

Brown MB, Abramowicz AE, Panzica PJ, Weber G. Anesthetic considerations of organ procurement after brain and cardiac death: a narrative review. Cureus. 2023;15(6):e40629.

PubMed  PubMed Central  Google Scholar 

Ryan JB, Hicks M, Cropper JR, Garlick SR, Kesteven SH, Wilson MK, et al. Functional evidence of reversible ischemic injury immediately after the sympathetic storm associated with experimental brain death. J Heart Lung Transpl. 2003;22(8):922–8.

Article  Google Scholar 

Schwarz P, Custodio G, Rheinheimer J, Crispim D, Leitao CB, Rech TH. Brain death-induced inflammatory activity is similar to sepsis-induced cytokine release. Cell Transpl. 2018;27(10):1417–24.

Article  Google Scholar 

Walweel K, Boon AC, See Hoe LE, Obonyo NG, Pedersen SE, Diab SD, et al. Brain stem death induces pro-inflammatory cytokine production and cardiac dysfunction in sheep model. Biomed J. 2022;45(5):776–87.

Article  CAS  PubMed  Google Scholar 

Khush KK, Malinoski D, Luikart H, Wayda B, Groat T, Nguyen J, et al. Left ventricular dysfunction associated with brain death: Results from the donor heart study. Circulation. 2023;148(10):822–33.

Article  PubMed  PubMed Central  Google Scholar 

Russo MJ, Iribarne A, Hong KN, Ramlawi B, Chen JM, Takayama H, et al. Factors associated with primary graft failure after heart transplantation. Transplantation. 2010;90(4):444–50.

Article  PubMed  Google Scholar 

Tang PC, Wu X, Zhang M, Likosky D, Haft JW, Lei I, et al. Determining optimal donor heart ischemic times in adult cardiac transplantation. J Card Surg. 2022;37(7):2042–50.

Article  PubMed  PubMed Central  Google Scholar 

Moayedi Y, Rodenas-Alesina E, Mueller B, Fan CS, Cherikh WS, Stehlik J, et al. Rethinking donor and recipient risk matching in europe and north america: using heart transplant predictors of donor and recipient risk. Circulation Heart Fail. 2023;16(5):e009994.

Article  Google Scholar 

Wayda B, Angleitner P, Smits JM, van Kins A, Berchtold-Herz M, De Pauw M, et al. Disparities in donor heart acceptance between the USA and Europe: clinical implications. Eur Heart J. 2023;44(44):4665–74.

Article  PubMed  PubMed Central  Google Scholar 

Ródenas Alesina E, Guzman Bofarull J, Moayedi Y, Truby L, Foroutan F, Fan C, et al. Comparative regional analysis of severe primary graft dysfunction: Insights from tthe international consortium on PGD. J Heart Lung Transplantation. 2024;43(4):S368.

Article  Google Scholar 

Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6(2):209.

Article  PubMed  PubMed Central  Google Scholar 

Reinders ME, Sho M, Izawa A, Wang P, Mukhopadhyay D, Koss KE, et al. Proinflammatory functions of vascular endothelial growth factor in alloimmunity. J Clin Invest. 2003;112(11):1655–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol. 2014;9(2):142–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holmstrom EJ, Syrjala SO, Dhaygude K, Tuuminen R, Krebs R, Lommi J, et al. Donor plasma VEGF-A as a biomarker for myocardial injury and primary graft dysfunction after heart transplantation. J Heart Lung Transpl. 2024. https://doi.org/10.1016/j.healun.2024.06.004

Jernryd V, Metzsch C, Andersson B, Smith JG, Nilsson J. Myocardial injury biomarkers at point of care for early identification of primary graft dysfunction after heart transplantation. Clin Transpl. 2022;36(2):e14526.

Article  CAS  Google Scholar 

Martinez JJ, Peltz M, Pruszynski JE, Huffman LC, Bajona P, Wait MA, et al. Recipient cardiac enzymes: An early indicator of primary graft dysfunction. J Heart Lung Transpl. 2018;37(4):S435–6.

Article  Google Scholar 

Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 2016;133(21):2038–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Truby LK, Kwee LC, Bowles DE, Casalinova S, Ilkayeva O, Muehlbauer MJ, et al. Metabolomic profiling during ex situ normothermic perfusion before heart transplantation defines patterns of substrate utilization and correlates with markers of allograft injury. J Heart Lung Transpl. 2024;43(5):716–26.

Article  Google Scholar 

Li T, Zhang Z, Kolwicz SC Jr, Abell L, Roe ND, Kim M, et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to Ischemia-Reperfusion Injury. Cell Metab. 2017;25(2):374–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Truby L. Bridge to transplant with continuous flow left ventricular assist devices increases risk for severe primary graft dysfunction. J Heart Lung Transplant. 2018;37(4):S328.

Google Scholar 

Truby LK, Kwee LC, Agarwal R, Grass E, DeVore AD, Patel CB, et al. Proteomic profiling identifies CLEC4C expression as a novel biomarker of primary graft dysfunction after heart transplantation. J Heart lung Transplantation: Official Publication Int Soc Heart Transplantation. 2021;40(12):1589–98.

Article  Google Scholar 

Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15(8):471–8

Comments (0)

No login
gif