Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55(8):1596–1608
Article CAS PubMed Central PubMed Google Scholar
Obinata H, Hla T (2019) Sphingosine 1-phosphate and inflammation. Int Immunol 31(9):617–625. https://doi.org/10.1093/intimm/dxz037
Article CAS PubMed Central PubMed Google Scholar
McGinley MP, Cohen JA (2021) Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 398(10306):1184–1194. https://doi.org/10.1016/S0140-6736(21)00244-0
Article CAS PubMed Google Scholar
Marciniak A, Camp SM, Garcia JGN, Polt R (2018) An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 28(23):3585–3591. https://doi.org/10.1016/j.bmcl.2018.10.042
Article CAS PubMed Central PubMed Google Scholar
Alvarez SE, Harikumar KB, Hait NC et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301):1084–1088. https://doi.org/10.1038/nature09128
Article CAS PubMed Central PubMed Google Scholar
Xia P, Wang L, Moretti PA et al (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 277(10):7996–8003. https://doi.org/10.1074/jbc.M111423200
Article CAS PubMed Google Scholar
Hait NC, Wise LE, Allegood JC et al (2014) Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat Neurosci 17(7):971–980. https://doi.org/10.1038/nn.3728
Article CAS PubMed Central PubMed Google Scholar
O'Sullivan SA, O'Sullivan C, Healy LM, Dev KK, Sheridan GK (2018) Sphingosine 1-phosphate receptors regulate TLR4-induced CXCL5 release from astrocytes and microglia. J Neurochem 144(6):736–747. https://doi.org/10.1111/jnc.14313
Article CAS PubMed Google Scholar
Van Doorn R, Van Horssen J, Verzijl D et al (2010) Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia 58(12):1465–1476
Fischer I, Alliod C, Martinier N, Newcombe J, Brana C, Pouly S (2011) Sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 are functionally upregulated on astrocytes under pro-inflammatory conditions. PLoS One 6(8):e23905
Article CAS PubMed Central PubMed Google Scholar
Jiang H, Joshi S, Liu H et al (2021) In Vitro and In Vivo Investigation of S1PR1 Expression in the Central Nervous System Using [3H]CS1P1 and [11C]CS1P1. ACS Chem Neurosci 12(19):3733–3744. https://doi.org/10.1021/acschemneuro.1c00492
Article CAS PubMed Google Scholar
Liu H, Jin H, Yue X et al (2016) PET Imaging Study of S1PR1 Expression in a Rat Model of Multiple Sclerosis. Mol Imaging Biol 18(5):724–732. https://doi.org/10.1007/s11307-016-0944-y
Article CAS PubMed Central PubMed Google Scholar
Jin H, Yang H, Liu H et al (2017) A promising carbon-11-labeled sphingosine-1-phosphate receptor 1-specific PET tracer for imaging vascular injury. J Nucl Cardiol 24(2):558–570. https://doi.org/10.1007/s12350-015-0391-1
Liu H, Jin H, Yue X et al (2017) PET Study of Sphingosine-1-Phosphate Receptor 1 Expression in Response to Vascular Inflammation in a Rat Model of Carotid Injury. Mol Imaging 16:1536012116689770. https://doi.org/10.1177/1536012116689770
Article CAS PubMed Central PubMed Google Scholar
Brier MR, Hamdi M, Rajamanikam J et al (2022) Phase 1 Evaluation of 11C-CS1P1 to Assess Safety and Dosimetry in Human Participants. J Nucl Med:jnumed.121.263189. https://doi.org/10.2967/jnumed.121.263189
Qiu L, Jiang H, Yu Y et al (2021) Radiosynthesis and evaluation of a fluorine-18 radiotracer [18F]FS1P1 for imaging sphingosine-1-phosphate receptor 1. Org Biomol Chem 20(5):1041–1052. https://doi.org/10.1039/d1ob02225c
Liu H, Luo Z, Gu J et al (2020) In vivo Characterization of Four 18F-Labeled S1PR1 Tracers for Neuroinflammation. Mol Imaging Biol 22(5):1362–1369. https://doi.org/10.1007/s11307-020-01514-8
Article CAS PubMed Central PubMed Google Scholar
Luo Z, Han J, Liu H et al (2018) Syntheses and in vitro biological evaluation of S1PR1 ligands and PET studies of four F-18 labeled radiotracers in the brain of nonhuman primates. Org Biomol Chem 16(47):9171–9184. https://doi.org/10.1039/c8ob02609b
Article CAS PubMed Central PubMed Google Scholar
Jiang H, Gu J, Zhao H et al (2021) PET Study of Sphingosine-1-phosphate Receptor 1 Expression in Response to S. aureus Infection. Mol Imaging 2021:9982020. https://doi.org/10.1155/2021/9982020
Article CAS PubMed Central PubMed Google Scholar
Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF (2000) Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol 27(6):627–630 http://www.ncbi.nlm.nih.gov/pubmed/11056380
Article CAS PubMed Google Scholar
Qiu L, Jiang H, Wang J et al (2022) Synthesis and initial in vivo evaluation of F-18 radioligands for S1PR1 PET imaging. J Nucl Med 64(Supplement 1):2320
Hillmer AT, Holden D, Fowles K et al (2017) Microglial depletion and activation: A [11C]PBR28 PET study in nonhuman primates. EJNMMI Res 7(1):59. https://doi.org/10.1186/s13550-017-0305-0
Article CAS PubMed Central PubMed Google Scholar
Hannestad J, Gallezot JD, Schafbauer T et al (2012) Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. NeuroImage 63(1):232–239. https://doi.org/10.1016/j.neuroimage.2012.06.055
Article CAS PubMed Google Scholar
Sandiego CM, Weinzimmer D, Carson RE (2013) Optimization of PET-MR registrations for nonhuman primates using mutual information measures: a Multi-Transform Method (MTM). Neuroimage 64:571–581. https://doi.org/10.1016/j.neuroimage.2012.08.051
Rohlfing T, Kroenke CD, Sullivan EV et al (2012) The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization. Front Neuroinform 6:27. https://doi.org/10.3389/fninf.2012.00027
Article PubMed Central PubMed Google Scholar
Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539. https://doi.org/10.1038/sj.jcbfm.9600493
Article CAS PubMed Google Scholar
Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21(6):635–652. https://doi.org/10.1097/00004647-200106000-00002
Article CAS PubMed Google Scholar
Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76(2):297–307
Ichise M, Toyama H, Innis RB, Carson RE (2002) Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 22(10):1271–1281. https://doi.org/10.1097/00004647-200210000-00015
Comments (0)