Assessing the impact of arsenic on symbiotic and free-living PGPB: plant growth promoting traits, bacterial compatibility and adhesion on soybean seed

Armendariz AL, Talano MA, Wevar Oller AL, Medina MI, Agostini E (2015) Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J Environ Sci (China) 33:203–210

Article  CAS  PubMed  Google Scholar 

Armendariz AL, Talano MA, Travaglia C, Reinoso H, Wevar Oller AL, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

Article  CAS  PubMed  Google Scholar 

Armendariz AL, Talano MA, Olmos Nicotra MF, Escudero L, Breser ML, Porporatto C, Agostini E (2019) Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol Biochem 138:26–35

Article  CAS  PubMed  Google Scholar 

Aullón Alcaine A, Schulz C, Bundschuh J, Jacks G, Thunvik R, Gustafsson JP, Mörth CM, Sracek O, Ahmad A, Bhattacharya P (2020) Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern la pampa province in argentina. Sci Total Environ 715:136671

Article  PubMed  Google Scholar 

Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ (2010) Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal toleranceemi. Environ Microbiol Rep 2:419–425

Article  CAS  PubMed  Google Scholar 

Bustingorri C, Balestrasse K, Lavado R (2015) Effects of high arsenic and fluoride soil concentrations on soybean plants. Int J Exper Bot 84:407–416

Google Scholar 

Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

Article  Google Scholar 

Choudhary M, Meena VS, Panday SC, Mondal T, Yadav RP, Mishra PK, Bisht JK, Pattanayak A (2021) Long-term effects of organic manure and inorganic fertilization on biological soil quality indicators of soybean-wheat rotation in the Indian mid-Himalaya. Appl Soil Ecol 157:103754

Article  Google Scholar 

Chromkaew Y, Shutsrirung A (2019) Phosphate Solubilization and Detoxification Mechanism of Arsenic-resistant Bacteria. Journal of Agriculture 35:227–238

Google Scholar 

Costa-Gutierrez SB, Adler C, Espinosa-Urgel M, de Cristóbal RE (2022) Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-022-11881-7

Article  PubMed  PubMed Central  Google Scholar 

Das S, Jean JS, Kar S, Chou ML, Chen CY (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater 272:112–120

Article  CAS  PubMed  Google Scholar 

del Orozco-Mosqueda M, C., Flores, A., Rojas-Sánchez, B., Urtis-Flores, C.A., Morales-Cedeño, L.R., Valencia-Marin, M.F., Chávez-Avila, S., Rojas-Solis, D., Santoyo, G., (2021) Plant growth-promoting bacteria as bioinoculants: Attributes and challenges for sustainable crop improvement. Agronomy 11:1167

Article  CAS  Google Scholar 

Department of Agricultural Estimates and Institute of Economic Studies, 2022. Closing report on the 2021/22 soybean campaign, Buenos Aires Grain Exchange. Buenos Aires.

Döbereiner J (1989) Isolation and identification of root associated diazotrophs. Plant Soil 110:207–212

Article  Google Scholar 

Dudeja SS, Jambheshwar G, Chaudhary K (1993) Effect of high temperature on production of hydrolytic enzyme by Bradyrhizobium sp. (Cajanus). Legum Res 16:31–36

Google Scholar 

El-Ghamry A, Mosa A, Alshaal T, El-Ramady H (2018) Nanofertilizers vs. Biofertilizers: New Insights. Environment, Biodiversity and Soil Security 2:51–72

Google Scholar 

Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

Article  CAS  PubMed  Google Scholar 

Fekih IB, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:1–11

Google Scholar 

Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

Article  CAS  PubMed  Google Scholar 

Franchi E, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G, Vocciante M (2019) Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Sci Total Environ 655:328–336

Article  CAS  PubMed  Google Scholar 

Funes Pinter I, Salomon MV, Berli F, Bottini R, Piccoli P (2017) Characterization of the As(III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl Soil Ecol 109:60–68

Article  Google Scholar 

George T, Ben Bohlool B, Singleton PW (1987) Bradyrhizobium japonicum-Environment Interactions: nodulation and interstrain competition in soils along an elevational transectt. Appl Environ Microbiol 53:1113–1117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6

Article  PubMed  Google Scholar 

Ghosh PK, Maiti TK, Pramanik K, Ghosh SK, Mitra S, De TK (2018) The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 211:407–419

Article  CAS  PubMed  Google Scholar 

Ghosh A, Pramanik K, Bhattacharya S, Mondal S, Kumar Ghosh S, Kumar Ghosh P, Kanti Maiti T (2021) Abatement of arsenic-induced phytotoxic effects in rice seedlings by an arsenic-resistant Pantoea dispersa strain. Environ Sci Pollut Res 28:21633–21649

Article  CAS  Google Scholar 

Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goswami M, Deka S (2020) Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: a review. Pedosphere 30:40–61

Article  CAS  Google Scholar 

Jabborova D, Kannepalli A, Davranov K, Narimanov A, Enakiev Y, Syed A, Elgorban AM, Bahkali AH, Wirth S, Sayyed RZ, Gafur A (2021) Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Nature 11:22081

CAS  Google Scholar 

Jadhav, H.P., Shaikh, S.S., Sayyed, R.Z., 2017. Role of Hydrolytic Enzymes of Rhizoflora in Biocontrol of Fungal Phytopathogens: An Overview, in: Rhizotrophs: Plant Growth Promotion to Bioremediation. Springer Singapore, pp. 183–203. https://doi.org/10.1007/978-981-10-4862-3_9

Khan N, Bano A, Ali S, Ali Babar M (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

Article  CAS  Google Scholar 

Krasilnikov, P., Taboada, M.A., Amanullah, 2022. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture (Switzerland) 12.

Kumar S, Choudhary AK, Suyal DC, Makarana G, Goel R (2022) Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. J Hazard Mater 425:127965

Article  CAS  PubMed  Google Scholar 

Kushwaha AS, Thakur RS, Patel DK, Kumar M (2022) Impact of arsenic on phosphate solubilization, acquisition and poly-phosphate accumulation in endophytic fungus Serendipita indica. Microbiol Res 259:127014

Article  CAS  PubMed  Google Scholar 

Laha A, Bhattacharyya S, Sengupta S, Bhattacharyya K, GuhaRoy S (2021) Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils. Arch Microbiol 203:4677–4692

Article  CAS  PubMed  Google Scholar 

Lakshmanan V, Cottone J, Bais HP (2016) Killing two birds with one stone: natural rice rhizospheric microbes reduce arsenic uptake and blast infections in rice. Front Plant Sci 7:1514

Article  PubMed  PubMed Central  Google Scholar 

Lami MJ, Adler C, Caram-Di Santo MC, Zenoff AM, de Cristóbal RE, Espinosa-Urgel M, Vincent PA (2020) Pseudomonas stutzeri MJL19, a rhizosphere-colonizing bacterium that promotes plant growth under saline stress. J Appl Microbiol 129:1321–1336

Article  CAS  PubMed  Google Scholar 

Litter MI, Ingallinella AM, Olmos V, Savio M, Difeo G, Botto L, Farfán Torres EM, Taylor S, Frangie S, Herkovits J, Schalamuk I, González MJ, Berardozzi E, García Einschlag FS, Bhattacharya P, Ahmad A (2019) Arsenic in argentina: occurrence, human health, legislation and determination. Sci Total Environ 676:756–766

Comments (0)

No login
gif