Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW (2018) Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 9:321. https://doi.org/10.3390/genes9070321
Article CAS PubMed PubMed Central Google Scholar
Ahnia H, Bourebaba Y, Durán D, Boulila F et al (2018) Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria. Syst Appl Microbiol 41:333–339. https://doi.org/10.1016/j.syapm.2018.03.004
Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K (2017) Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 12:1–16. https://doi.org/10.1186/s40793-017-0220-z
Ba S, Willems A, de Lajudie P, Roche P et al (2002) Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 25:130–145. https://doi.org/10.1078/0723-2020-00091
Article CAS PubMed Google Scholar
Baele M, Baele P, Vaneechoutte M, Storms V et al (2000) Application of tRNA inter-genic spacer PCR for identification of Enterococcus species. J Clin Microbiol 38:4201–4207. https://doi.org/10.1128/JCM.38.11.4201-4207.2000
Article CAS PubMed PubMed Central Google Scholar
Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198. https://doi.org/10.1099/00221287-84-1-188
Article CAS PubMed Google Scholar
Beukes CW, Steenkamp ET, Van-Zyl E, Avontuur J et al (2019) Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides. Antonie Van Leeuwenhoek 112:1369–1385. https://doi.org/10.1007/s10482-019-01269-5
Article CAS PubMed Google Scholar
Birnbaum C, Barrett LG, Thrall PH, Leishman MR (2012) Mutualisms are not constraining cross-continental invasion success of Acacia species within Australia. Divers Distrib 18:962–976. https://doi.org/10.1111/j.1472-4642.2012.00920.x
Boubaker JB, Mansour H, Ghedira K, Chekir GL (2012) Polar extracts from (Tunisian) Acacia salicina Lindl. Study of the antimicrobial and antigenotoxic activities. BMC Complement Altern Med 12:37. https://doi.org/10.1186/1472-6882-12-37
Article PubMed PubMed Central Google Scholar
Bouhlel I, Limem I, Skandrani I, Nefatti A et al (2010) Assessment of isorhamnetin 3-O-neohesperidoside from Acacia salicina: protective effects toward oxidation damage and genotoxicity induced by aflatoxin B1 and nifuroxazide. J Appl Toxicol 30:551–558. https://doi.org/10.1002/jat.1525
Article CAS PubMed Google Scholar
Boukhatem ZF, Domergue O, Bekki A, Merabet C et al (2012) Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecol 80:534–547. https://doi.org/10.1111/j.1574-6941.2012.01315.x
Article CAS PubMed Google Scholar
Chahboune R, Barrijal S, Moreno S, Bedmar EJ (2011) Characterization of Bradyrhizobium species isolated from root nodules of Cytisus villosus grown in Morocco. Int J Syst Evol Microbiol 34:440–445. https://doi.org/10.1016/j.syapm.2011.04.008
Chatti IB, Boubaker J, Skandrani I, Bhouri W et al (2011) Antioxidant and antigenotoxic activities in Acacia salicina extracts and its protective role against DNA strand scission induced by hydroxyl radical. Food Chem Toxicol 49:1753–1758. https://doi.org/10.1016/j.fct.2011.04.022
Article CAS PubMed Google Scholar
Chenna R, Sugawara H, Koike T, Rodrigo L et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500. https://doi.org/10.1093/nar/gkg500
Article CAS PubMed PubMed Central Google Scholar
Claassens R, Venter SN, Beukes CW, Stępkowski T et al (2023) Bradyrhizobium xenonodulans sp. Nov. isolated from nodules of Australian Acacia species invasive to South Africa. Syst Appl Microbiol 46:126452. https://doi.org/10.1016/j.syapm.2023.126452
Article CAS PubMed Google Scholar
Correal E, Sánchez-Gómez P, Alcaraz F (1988) Les espèces ligneuses a usages multiples des zones arides Mediterraneannes. Agrimed Research Programme. Commission of European Communities. EUR 11770. Brussels, Belgium, pp 1–39
Coutinho HLC, Oliveira VM, Lovato A et al (1999) Evaluation of the diversity of rhizobia in Brazilian agricultural soils cultivated with soybeans. App Soil Ecol 13:159–167. https://doi.org/10.1016/S0929-1393(99)00031-1
Degefu T, Wolde-meskel E, Frostegård Å (2011) Multilocus sequence analyses reveal several unnamed Mesorhizobium genospecies nodulating Acacia species and Sesbania sesban trees in Southern regions of Ethiopia. Syst Appl Microbiol 34:216–226. https://doi.org/10.1016/j.syapm.2010.09.006
Article CAS PubMed Google Scholar
Degefu T, Wolde-meskel E, Frostegård Å (2012) Phylogenetic multilocus sequence analysis identifies seven novel Ensifer genospecies isolated from a less-well-explored biogeographical region in East Africa. Int J Syst Evol Microbiol 62:2286–2295. https://doi.org/10.1099/ijs.0.039230-0
Diouf D, Samba-Mbaye R, Lesueur D et al (2007) Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566. https://doi.org/10.1007/s00248-007-9243-0
Article CAS PubMed Google Scholar
Durán D, Rey L, Sánchez-Cañizares C et al (2013) Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain. Syst Appl Microbiol 36:128–136. https://doi.org/10.1016/j.syapm.2012.10.008
Article CAS PubMed Google Scholar
Gehlot HS, Panwar D, Tak N et al (2012) Nodulation of legumes from the Thar desert of India and molecular characterization of their rhizobia. Plant Soil 357:227–243. https://doi.org/10.1007/s11104-012-1143-5
Gehlot HS, Tak N, Kaushik M, Mitra S et al (2013) An invasive Mimosa in India does not adopt the symbionts of its native relatives. Ann Bot 112:179–196. https://doi.org/10.1093/aob/mct112
Article CAS PubMed PubMed Central Google Scholar
Grigg AH, Mulligan DR (1999) Biometric relationships for estimating standing biomass litterfall and litter accumulation of Acacia salicina on mined land in Central Queensland. Aust J Bot 47:807–816. https://doi.org/10.1071/BT97122
Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH et al (2013) Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 36:218–223. https://doi.org/10.1016/j.syapm.2013.03.001
Article CAS PubMed Google Scholar
Handley BA, Hedges AJ, Beringer JE (1998) Importance of host plants for detecting the population diversity of Rhizobium leguminosarum biovar viciae in soil. Soil Biol Biochem 30:241–249. https://doi.org/10.1016/S0038-0717(97)00103-X
Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309
Article CAS PubMed Google Scholar
Hsouna J, Gritli T, Ilahi H, Ellouze W et al (2022) Genotypic and symbiotic diversity studies of rhizobia nodulating Acacia saligna in Tunisia reveal two novel symbiovars within the Rhizobium leguminosarum complex and Bradyrhizobium. Syst Appl Microbiol 45:126343. https://doi.org/10.1016/j.syapm.2022.126343
Article CAS PubMed Google Scholar
Hsouna J, Ilahi H, Han JC, Gritli T et al (2023) Rhizobium acaciae sp. Nov., a new nitrogen-fixing symbiovar isolated from root nodules of Acacia saligna in Tunisia. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005900
Comments (0)