Owusu PA, Asumadu-Sarkodie S, Dubey S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016;3(1).
Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, et al. Direct microbial transformation of carbon dioxide to value-added chemicals: a comprehensive analysis and application potentials. Bioresour Technol. 2019;288:121401.
Maheshwari P, Haider MB, Yusuf M, Klemeš JJ, Bokhari A, Beg M et al. A review on latest trends in cleaner biodiesel production: role of feedstock, production methods, and catalysts. J Clean Prod. 2022;355.
Cheon S, Kim HM, Gustavsson M, Lee SY. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr Opin Chem Biol. 2016;35:10–21.
Joshi S, Mishra S. Recent advances in biofuel production through metabolic engineering. Bioresour Technol. 2022;352:127037.
Krishnan A, McNeil BA, Stuart DT. Biosynthesis of fatty alcohols in Engineered Microbial cell factories: advances and limitations. Front Bioeng Biotechnol. 2020;8:610936.
Kang MK, Nielsen J. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol. 2017;44(4–5):613–22.
Zhou YJ, Buijs NA, Siewers V, Nielsen J. Fatty acid-derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol. 2014;2:32.
Chen L, Lee J, Ning Chen W. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in < em > Saccharomyces cerevisiae: a review. AIMS Bioeng. 2016;3(4):468–92.
Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia Lipolytica - A Review. Bioresour Technol. 2020;313:123707.
Fillet S, Gibert J, Suarez B, Lara A, Ronchel C, Adrio JL. Fatty alcohols production by oleaginous yeast. J Ind Microbiol Biotechnol. 2015;42(11):1463–72.
Zhang Y, Peng J, Zhao H, Shi S. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnol Biofuels. 2021;14(1):115.
Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. Biotechnol Biofuels Bioprod. 2022;15(1):113.
Qin N, Li L, Wan X, Ji X, Chen Y, Li C, et al. Increased CO(2) fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun. 2024;15(1):1591.
Cai P, Wu X, Deng J, Gao L, Shen Y, Yao L, Zhou YJ. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci U S A. 2022;119(29):e2201711119.
Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab. 2022;4(7):932–43.
Zhai X, Gao J, Li Y, Grininger M, Zhou YJ. Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast. Proc Natl Acad Sci U S A. 2023;120(12):e2220816120.
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng. 2013;15:48–54.
Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Bioresour Technol. 2021;342:125978.
Zhang Y, Su M, Qin N, Nielsen J, Liu Z. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microb Cell Fact. 2020;19(1):226.
Chen L, Zhang J, Lee J, Chen WN. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl Microbiol Biotechnol. 2014;98(15):6739–50.
Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun. 2016;7:11709.
Yuzbasheva EY, Mostova EB, Andreeva NI, Yuzbashev TV, Fedorov AS, Konova IA, Sineoky SP. A metabolic engineering strategy for producing free fatty acids by the Yarrowia Lipolytica yeast based on impairment of glycerol metabolism. Biotechnol Bioeng. 2018;115(2):433–43.
Xu P, Qiao K, Ahn WS, Stephanopoulos G. Engineering Yarrowia Lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci U S A. 2016;113(39):10848–53.
Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014;21:103–13.
Eriksen DT, HamediRad M, Yuan Y, Zhao H. Orthogonal fatty acid Biosynthetic Pathway improves fatty acid Ethyl Ester production in Saccharomyces cerevisiae. ACS Synth Biol. 2015;4(7):808–14.
Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng. 2016;38:38–46.
Park K, Hahn JS. Engineering Yarrowia Lipolytica for sustainable ricinoleic acid production: a pathway to free fatty acid synthesis. Metab Eng. 2024;81:197–209.
Leber C, Polson B, Fernandez-Moya R, Da Silva NA. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab Eng. 2015;28:54–62.
Wang K, Da Y, Bi H, Liu Y, Chen B, Wang M, et al. A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae. Renewable Energy. 2023;208:331–40.
Wang K, Wu Z, Du J, Liu Y, Zhu Z, Feng P et al. Metabolic Engineering of Saccharomyces cerevisiae for Conversion of Formate and acetate into free fatty acids. Fermentation. 2023;9(11).
Jezierska S, Claus S, Ledesma-Amaro R, Van Bogaert I. Redirecting the lipid metabolism of the yeast Starmerella bombicola from glycolipid to fatty acid production. J Ind Microbiol Biotechnol. 2019;46(12):1697–706.
Lu R, Cao L, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia Lipolytica to produce advanced biofuels: current status and perspectives. Bioresour Technol. 2021;341:125877.
Zhang Y, Nielsen J, Liu Z. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons. Biotechnol Bioeng. 2018;115(9):2139–47.
Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng. 2014;111(9):1740–7.
d’Espaux L, Ghosh A, Runguphan W, Wehrs M, Xu F, Konzock O, et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab Eng. 2017;42:115–25.
Huang C, Chen Y, Cheng S, Li M, Wang L, Cheng M, et al. Enhanced acetate utilization for value-added chemicals production in Yarrowia Lipolytica by integration of metabolic engineering and microbial electrosynthesis. Biotechnol Bioeng. 2023;120(10):3013–24.
Wang W, Wei H, Knoshaug E, Van Wychen S, Xu Q, Himmel ME, Zhang M. Fatty alcohol production in Lipomyces Starkeyi and Yarrowia Lipolytica. Biotechnol Biofuels. 2016;9:227.
Cordova LT, Butler J, Alper HS. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia Lipolytica. Metab Eng Commun. 2020;10:e00105.
Feng X, Lian J, Zhao H. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng. 2015;27:10–9.
Wang G, Xiong X, Ghogare R, Wang P, Meng Y, Chen S. Exploring fatty alcohol-producing capability of Yarrowia Lipolytica. Biotechnol Biofuels. 2016;9:107.
Teixeira PG, Ferreira R, Zhou YJ, Siewers V, Nielsen J. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16(1):45.
Jin Z, Wong A, Foo JL, Ng J, Cao YX, Chang MW, Yuan YJ. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnol Bioeng. 2016;113(4):842–51.
Hu Y, Zhu Z, Gradischnig D, Winkler M, Nielsen J, Siewers V. Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast. Proc Natl Acad Sci U S A. 2020;117(37):22974–83.
Comments (0)