Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast

Owusu PA, Asumadu-Sarkodie S, Dubey S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016;3(1).

Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, et al. Direct microbial transformation of carbon dioxide to value-added chemicals: a comprehensive analysis and application potentials. Bioresour Technol. 2019;288:121401.

Article  Google Scholar 

Maheshwari P, Haider MB, Yusuf M, Klemeš JJ, Bokhari A, Beg M et al. A review on latest trends in cleaner biodiesel production: role of feedstock, production methods, and catalysts. J Clean Prod. 2022;355.

Cheon S, Kim HM, Gustavsson M, Lee SY. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr Opin Chem Biol. 2016;35:10–21.

Article  MATH  Google Scholar 

Joshi S, Mishra S. Recent advances in biofuel production through metabolic engineering. Bioresour Technol. 2022;352:127037.

Article  MATH  Google Scholar 

Krishnan A, McNeil BA, Stuart DT. Biosynthesis of fatty alcohols in Engineered Microbial cell factories: advances and limitations. Front Bioeng Biotechnol. 2020;8:610936.

Article  Google Scholar 

Kang MK, Nielsen J. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol. 2017;44(4–5):613–22.

Article  MATH  Google Scholar 

Zhou YJ, Buijs NA, Siewers V, Nielsen J. Fatty acid-derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol. 2014;2:32.

Article  Google Scholar 

Chen L, Lee J, Ning Chen W. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in < em > Saccharomyces cerevisiae: a review. AIMS Bioeng. 2016;3(4):468–92.

Article  MATH  Google Scholar 

Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia Lipolytica - A Review. Bioresour Technol. 2020;313:123707.

Article  MATH  Google Scholar 

Fillet S, Gibert J, Suarez B, Lara A, Ronchel C, Adrio JL. Fatty alcohols production by oleaginous yeast. J Ind Microbiol Biotechnol. 2015;42(11):1463–72.

Article  Google Scholar 

Zhang Y, Peng J, Zhao H, Shi S. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnol Biofuels. 2021;14(1):115.

Article  MATH  Google Scholar 

Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. Biotechnol Biofuels Bioprod. 2022;15(1):113.

Article  Google Scholar 

Qin N, Li L, Wan X, Ji X, Chen Y, Li C, et al. Increased CO(2) fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun. 2024;15(1):1591.

Article  MATH  Google Scholar 

Cai P, Wu X, Deng J, Gao L, Shen Y, Yao L, Zhou YJ. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci U S A. 2022;119(29):e2201711119.

Article  Google Scholar 

Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab. 2022;4(7):932–43.

Article  Google Scholar 

Zhai X, Gao J, Li Y, Grininger M, Zhou YJ. Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast. Proc Natl Acad Sci U S A. 2023;120(12):e2220816120.

Article  Google Scholar 

Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng. 2013;15:48–54.

Article  Google Scholar 

Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Bioresour Technol. 2021;342:125978.

Article  MATH  Google Scholar 

Zhang Y, Su M, Qin N, Nielsen J, Liu Z. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microb Cell Fact. 2020;19(1):226.

Article  Google Scholar 

Chen L, Zhang J, Lee J, Chen WN. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl Microbiol Biotechnol. 2014;98(15):6739–50.

Article  MATH  Google Scholar 

Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun. 2016;7:11709.

Article  Google Scholar 

Yuzbasheva EY, Mostova EB, Andreeva NI, Yuzbashev TV, Fedorov AS, Konova IA, Sineoky SP. A metabolic engineering strategy for producing free fatty acids by the Yarrowia Lipolytica yeast based on impairment of glycerol metabolism. Biotechnol Bioeng. 2018;115(2):433–43.

Article  Google Scholar 

Xu P, Qiao K, Ahn WS, Stephanopoulos G. Engineering Yarrowia Lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci U S A. 2016;113(39):10848–53.

Article  Google Scholar 

Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014;21:103–13.

Article  Google Scholar 

Eriksen DT, HamediRad M, Yuan Y, Zhao H. Orthogonal fatty acid Biosynthetic Pathway improves fatty acid Ethyl Ester production in Saccharomyces cerevisiae. ACS Synth Biol. 2015;4(7):808–14.

Article  Google Scholar 

Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng. 2016;38:38–46.

Article  Google Scholar 

Park K, Hahn JS. Engineering Yarrowia Lipolytica for sustainable ricinoleic acid production: a pathway to free fatty acid synthesis. Metab Eng. 2024;81:197–209.

Article  MATH  Google Scholar 

Leber C, Polson B, Fernandez-Moya R, Da Silva NA. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab Eng. 2015;28:54–62.

Article  Google Scholar 

Wang K, Da Y, Bi H, Liu Y, Chen B, Wang M, et al. A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae. Renewable Energy. 2023;208:331–40.

Article  MATH  Google Scholar 

Wang K, Wu Z, Du J, Liu Y, Zhu Z, Feng P et al. Metabolic Engineering of Saccharomyces cerevisiae for Conversion of Formate and acetate into free fatty acids. Fermentation. 2023;9(11).

Jezierska S, Claus S, Ledesma-Amaro R, Van Bogaert I. Redirecting the lipid metabolism of the yeast Starmerella bombicola from glycolipid to fatty acid production. J Ind Microbiol Biotechnol. 2019;46(12):1697–706.

Article  Google Scholar 

Lu R, Cao L, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia Lipolytica to produce advanced biofuels: current status and perspectives. Bioresour Technol. 2021;341:125877.

Article  Google Scholar 

Zhang Y, Nielsen J, Liu Z. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons. Biotechnol Bioeng. 2018;115(9):2139–47.

Article  MATH  Google Scholar 

Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng. 2014;111(9):1740–7.

Article  Google Scholar 

d’Espaux L, Ghosh A, Runguphan W, Wehrs M, Xu F, Konzock O, et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab Eng. 2017;42:115–25.

Article  Google Scholar 

Huang C, Chen Y, Cheng S, Li M, Wang L, Cheng M, et al. Enhanced acetate utilization for value-added chemicals production in Yarrowia Lipolytica by integration of metabolic engineering and microbial electrosynthesis. Biotechnol Bioeng. 2023;120(10):3013–24.

Article  MATH  Google Scholar 

Wang W, Wei H, Knoshaug E, Van Wychen S, Xu Q, Himmel ME, Zhang M. Fatty alcohol production in Lipomyces Starkeyi and Yarrowia Lipolytica. Biotechnol Biofuels. 2016;9:227.

Article  Google Scholar 

Cordova LT, Butler J, Alper HS. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia Lipolytica. Metab Eng Commun. 2020;10:e00105.

Article  Google Scholar 

Feng X, Lian J, Zhao H. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng. 2015;27:10–9.

Article  MATH  Google Scholar 

Wang G, Xiong X, Ghogare R, Wang P, Meng Y, Chen S. Exploring fatty alcohol-producing capability of Yarrowia Lipolytica. Biotechnol Biofuels. 2016;9:107.

Article  MATH  Google Scholar 

Teixeira PG, Ferreira R, Zhou YJ, Siewers V, Nielsen J. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16(1):45.

Article  Google Scholar 

Jin Z, Wong A, Foo JL, Ng J, Cao YX, Chang MW, Yuan YJ. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnol Bioeng. 2016;113(4):842–51.

Article  Google Scholar 

Hu Y, Zhu Z, Gradischnig D, Winkler M, Nielsen J, Siewers V. Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast. Proc Natl Acad Sci U S A. 2020;117(37):22974–83.

Comments (0)

No login
gif