Lithium-doped calcium silicate cement regulates the immune microenvironment and promotes M2 macrophage polarization for enhancing bone regeneration

Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, et al. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio. 2023;20:100636.

Article  MATH  Google Scholar 

Su Z, Guo C, Gui X, Wu L, Zhang B, Qin Y, et al. 3D printing of customized bioceramics for promoting bone tissue regeneration by regulating sympathetic nerve behavior. J Mater Chem B. 2024;12:4217–31.

Article  Google Scholar 

Luo S, Wang Z, He J, Tang G, Yuan D, Wu Z, et al. Bioceramic modular tissue-engineered bone with rapid vascularization for large bone defects. Ceram Int. 2024;50:18275–83.

Article  Google Scholar 

Ma C, Tao C, Zhang Z, Zhou H, Fan C, Wang D. Development of artificial bone graft via in vitro endochondral ossification (ECO) strategy for bone repair. Mater Today Bio. 2023;23:100893.

Article  Google Scholar 

Chen YT, Chuang YH, Chen CM, Wang JY, Wang J. Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering. Biomater Adv. 2023;153:213562.

Article  MATH  Google Scholar 

Chen YW, Lin YH, Lin TL, Lee KX, Yu MH, Shie MY. 3D-biofabricated chondrocyte-laden decellularized extracellular matrix-contained gelatin methacrylate auxetic scaffolds under cyclic tensile stimulation for cartilage regeneration. Biofabrication. 2023;15:045007.

Article  Google Scholar 

Han X, Wang F, Ma Y, Lv X, Zhang K, Wang Y, et al. TPG-functionalized PLGA/PCL nanofiber membrane facilitates periodontal tissue regeneration by modulating macrophages polarization via suppressing PI3K/AKT and NF-κB signaling pathways. Mater Today Bio. 2024;26:101036.

Article  Google Scholar 

Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. Biomater Adv. 2023;154:213637.

Article  Google Scholar 

Chen Z, Xing F, Zhou Y, Yu P, Xu J, Luo R, et al. Integrated osteoimmunomodulatory strategies based on designing scaffold surface properties in bone regeneration. J Mater Chem B. 2023;11:6718–45.

Article  Google Scholar 

Wang M, Chen F, Tang Y, Wang J, Chen X, Li X, et al. Regulation of macrophage polarization and functional status by modulating hydroxyapatite ceramic micro/nano-topography. Mater Des. 2022;213:110302.

Article  MATH  Google Scholar 

Carrara SC, Davila-Lezama A, Cabriel C, Berenschot EJW, Krol S, Gardeniers JGE, et al. 3D topographies promote macrophage M2d-subset differentiation. Mater Today Bio. 2024;24:100897.

Article  Google Scholar 

Luo Y, Yang Z, Zhao X, Li D, Li Q, Wei Y, et al. Immune regulation enhances osteogenesis and angiogenesis using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA) delivery for osteonecrosis. Mater Today Bio. 2024;25:100976.

Article  Google Scholar 

Pan X, Ou M, Lu Y, Nie Q, Dai X, Liu O. Immunomodulatory zinc-based materials for tissue regeneration. Biomater Adv. 2023;152:213503.

Article  Google Scholar 

Song Z, Cheng Y, Chen M, Xie X. Macrophage polarization in bone implant repair: a review. Tissue Cell. 2023;82:102112.

Article  Google Scholar 

Hu Y, Tang L, Wang Z, Yan H, Yi X, Wang H, et al. Inducing in situ M2 macrophage polarization to promote the repair of bone defects via scaffold-mediated sustained delivery of luteolin. J Control Release. 2024;365:889–904.

Article  MATH  Google Scholar 

Ali M, He Y, Chang ASN, Wu A, Liu J, Cao Y, et al. Osteoimmune-modulating and BMP-2-eluting anodised 3D printed titanium for accelerated bone regeneration. J Mater Chem B. 2023;12:97–111.

Article  Google Scholar 

Shie MY, Ding SJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials. 2013;34:6589–606.

Article  MATH  Google Scholar 

Tsai YL, Lee JJ, Wang CY, Lin YH, Chen CY, Shie MY. Gallic acid–coated nanolayer on mineral trioxide aggregate for regulating the inflammatory and differentiation cellular response profile of human dental pulp stem cells. Ceram Int. 2024;50:14656–63.

Article  Google Scholar 

Lin YH, Chuang TY, Chiang WH, Chen IWP, Wang K, Shie MY, et al. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Mater Sci Eng C. 2019;104:109887.

Article  Google Scholar 

Kao CT, Chiu YC, Lee AKX, Lin YH, Huang TH, Liu YC, et al. The synergistic effects of Xu Duan combined Sr-contained calcium silicate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis marker expression and the induction of bone regeneration in osteoporosis. Mater Sci Eng C. 2021;119:111629.

Article  Google Scholar 

Chiu YC, Lin YH, Chen YW, Kuo TY, Shie MY. Additive manufacturing of barium-doped calcium silicate/poly-ε-caprolactone scaffolds to activate CaSR and AKT signalling and osteogenic differentiation of mesenchymal stem cells. J Mater Chem B. 2023;11:4666–76.

Article  Google Scholar 

Li J, Li J, Wei Y, Xu N, Li J, Pu X, et al. Ion release behavior of vanadium-doped mesoporous bioactive glass particles and the effect of the released ions on osteogenic differentiation of BMSCs via the FAK/MAPK signaling pathway. J Mater Chem B. 2021;9:7848–65.

Article  Google Scholar 

Zhang X, Cui J, Cheng L, Lin K. Enhancement of osteoporotic bone regeneration by strontium-substituted 45S5 bioglass via time-dependent modulation of autophagy and the Akt/mTOR signaling pathway. J Mater Chem B. 2021;9:3489–501.

Article  MATH  Google Scholar 

Shie MY, Ding SJ, Chang HC. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011;7:2604–14.

Article  MATH  Google Scholar 

Wu M, Chen F, Liu H, Wu P, Yang Z, Zhang Z, et al. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration. Mater Today Bio. 2022;17:100458.

Article  Google Scholar 

Zhang Q, Gao S, Li B, Li Q, Li X, Cheng J, et al. Lithium-doped titanium dioxide-based multilayer hierarchical structure for accelerating nerve-induced bone regeneration. ACS Appl Mater Interfaces. 2024;16:22887–99.

MATH  Google Scholar 

Liu L, Yu F, Chen L, Xia L, Wu C, Fang B. Lithium-containing biomaterials stimulate cartilage repair through bone marrow stromal cells‐derived exosomal miR‐455‐3p and histone H3 acetylation. Adv Healthc Mater. 2023;12:2202390.

Article  Google Scholar 

Salam N, Gibson IR. Lithium ion doped carbonated hydroxyapatite compositions: synthesis, physicochemical characterisation and effect on osteogenic response in vitro. Biomater Adv. 2022;140:213068.

Article  Google Scholar 

Zhu Z, Yin J, Guan J, Hu B, Niu X, Jin D, et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3β‐dependent β‐catenin/Wnt pathway activation. FEBS J. 2014;281:5371–89.

Article  Google Scholar 

Wang W, Wei J, Lei D, Wang S, Zhang B, Shang S, et al. 3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration. Compos Part B Eng. 2023;256:110641.

Article  Google Scholar 

Alicka M, Sobierajska P, Kornicka K, Wiglusz RJ, Marycz K. Lithium ions (Li+) and nanohydroxyapatite (nHAp) doped with Li + enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with Li + and co-doped with europium (III) and samarium (III) ions. Mater Sci Eng C. 2019;99:1257–73.

Article  Google Scholar 

Wang CY, Chen CY, Chen KH, Lin YH, Yeh TP, Lee AKX, et al. The synergistic effects of strontium/magnesium-doped calcium silicate cement accelerates early angiogenesis and bone regeneration through double bioactive ion stimulation. Ceram Int. 2024;50:7121–31.

Article  Google Scholar 

Zhang F, Zhou M, Gu W, Shen Z, Ma X, Lu F, et al. Zinc-/copper-substituted dicalcium silicate cement: advanced biomaterials with enhanced osteogenesis and long-term antibacterial properties. J Mater Chem B. 2020;8:1060–70.

Article  Google Scholar 

Xu Z, Zhang D, Li H, Yin L, Song H, Wang W, et al. Effects of additives on the mechanical properties, rheology, and printing properties of Pcc-based 3DPMs. Ceram Int. 2023;49:28354–68.

Article  Google Scholar 

Mansoori-Kermani A, Mashayekhan S, Kermani F, Abdekhodaie MJ. The effect of tricalcium silicate incorporation on bioactivity, injectability, and mechanical properties of calcium sulfate/bioactive glass bone cement. Ceram Int. 2023;49:15003–14.

Article  MATH  Google Scholar 

Zhao W, Wang J, Zhai W, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005;26:6113–21.

Article  MATH  Google Scholar 

Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med. 2012;23:1479–88.

Article  Google Scholar 

Keikhosravani P, Maleki-Ghaleh H, Khosrowshahi AK, Bodaghi M, Dargahi Z, Kavanlouei M, et al. Bioactivity and antibacterial behaviors of nanostructured lithium-doped hydroxyapatite for bone scaffold application. Int J Mol Sci. 2021;22:9214.

Article  Google Scholar 

Lin TL, Lin YH, Lee AKX, Kuo TY, Chen CY, Chen KH, et al. The exosomal secretomes of mesenchymal stem cells extracted via 3D-printed lithium-doped calcium silicate scaffolds promote osteochondral regeneration. Mater Today Bio. 2023;22:100728.

Article  Google Scholar 

Liu WC, Hu CC, Tseng YY, Sakthivel R, Fan KS, Wang AN, et al. Study on strontium doped tricalcium silicate synthesized through sol-gel process. Mater Sci Eng C. 2020;108:110431.

Article  Google Scholar 

Zhang NZ, Zhang M, Tang HY, Qin L, Cheng CK. P2O5 enhances the bioactivity of lithium silicate glass ceramics via promoting phase transformation and for

Comments (0)

No login
gif