Dynamic control of the plasmid copy number maintained without antibiotics in Escherichia coli

Gubellini F, Verdon G, Karpowich NK, Luff JD, Boel G, Gauthier N et al. Physiological response to membrane protein overexpression in E. Coli. Mol Cell Proteom. 2011;10(10).

Jones KL, Kim S-W, Keasling J. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng. 2000;2(4):328–38.

Article  Google Scholar 

Beck SW, Ye D-y, Hwang HG, Jung GY. Stepwise Flux optimization for enhanced GABA production from acetate in Escherichia coli. J Agric Food Chem. 2024.

Heiss S, Hörmann A, Tauer C, Sonnleitner M, Egger E, Grabherr R, Heinl S. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microb Cell Fact. 2016;15:1–17.

Article  Google Scholar 

Lee SM, Jeong KJ. Advances in synthetic biology tools and engineering of Corynebacterium glutamicum as a platform host for recombinant protein production. Biotechnol Bioprocess Eng. 2023;28(6):962–76.

Article  Google Scholar 

Hong C, Kim Y, Lee H, Yun S, Lim HG, Yang J, Jang S. Vibrio species as next-generation chassis for accelerated synthetic biology. Biotechnol Bioprocess Eng. 2024;29(2):241–53.

Article  Google Scholar 

Wen J, Sun W, Leng G, Li D, Feng C, Tian Z, Wang X. Enhanced fermentative γ-aminobutyric acid production by a metabolic engineered Corynebacterium glutamicum. Biotechnol Bioprocess Eng. 2024;29(1):129–40.

Article  Google Scholar 

Byun G, Yang J, Seo SW. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli. Nucleic Acids Res. 2023;51(9):4650–9.

Article  Google Scholar 

Seo SW, Yang J-S, Cho H-S, Yang J, Kim SC, Park JM, et al. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci Rep. 2014;4(1):4515.

Article  Google Scholar 

Seo SW, Yang J-S, Kim I, Yang J, Min BE, Kim S, Jung GY. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng. 2013;15:67–74.

Article  Google Scholar 

Reis AC, Salis HM. An automated model test system for systematic development and improvement of gene expression models. ACS Synth Biol. 2020;9(11):3145–56.

Article  Google Scholar 

Darfeuille F, Unoson C, Vogel J, Wagner EGH. An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell. 2007;26(3):381–92.

Article  Google Scholar 

Urban JH, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res. 2007;35(3):1018–37.

Article  Google Scholar 

Cho JS, Yang D, Prabowo CPS, Ghiffary MR, Han T, Choi KR, et al. Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs. Nat Commun. 2023;14(1):2359.

Article  Google Scholar 

Kim G, Kim HJ, Kim K, Kim HJ, Yang J, Seo SW. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria. Nat Commun. 2024;15(1):5319.

Article  Google Scholar 

Hou J, Gao C, Guo L, Nielsen J, Ding Q, Tang W, et al. Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metab Eng. 2020;61:47–57.

Article  Google Scholar 

Gao C, Hou J, Xu P, Guo L, Chen X, Hu G, et al. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun. 2019;10(1):3751.

Article  Google Scholar 

Elharar Y, Schlussel S, Hecht N, Meijler MM, Gur E. The regulatory significance of tag recycling in the mycobacterial pup-proteasome system. FEBS J. 2017;284(12):1804–14.

Article  Google Scholar 

Joshi SH, Yong C, Gyorgy A. Inducible plasmid copy number control for synthetic biology in commonly used E. Coli strains. Nat Commun. 2022;13(1):6691.

Article  Google Scholar 

Rouches MV, Xu Y, Cortes LBG, Lambert G. A plasmid system with tunable copy number. Nat Commun. 2022;13(1):3908.

Article  Google Scholar 

Li C, Zou Y, Jiang T, Zhang J, Yan Y. Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metab Eng. 2022;70:67–78.

Article  Google Scholar 

Antimicrobial Resistance C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.

Article  Google Scholar 

Wein T, Wang Y, Hulter NF, Hammerschmidt K, Dagan T. Antibiotics interfere with the evolution of plasmid Stability. Curr Biol. 2020;30(19):3841–7. e4.

Article  Google Scholar 

Liao Y-C, Saengsawang B, Chen J-W, Zhuo X-Z, Li S-Y. Construction of an antibiotic-free Vector and its application in the Metabolic Engineering of Escherichia Coli for Polyhydroxybutyrate Production. Front Bioeng Biotechnol. 2022;10:837944.

Article  Google Scholar 

Chen Z, Yao J, Zhang P, Wang P, Ni S, Liu T, et al. Minimized antibiotic-free plasmid vector for gene therapy utilizing a new toxin-antitoxin system. Metab Eng. 2023;79:86–96.

Article  Google Scholar 

Amrofell MB, Rengarajan S, Vo ST, Tovar ESR, LoBello L, Dantas G, Moon TS. Engineering E. Coli strains using antibiotic-resistance-gene-free plasmids. Cell Rep Methods. 2023;3(12).

Fiedler M, Skerra A. proBA complementation of an auxotrophic E. Coli strain improves plasmid stability and expression yield during fermenter production of a recombinant antibody fragment. Gene. 2001;274(1–2):111–8.

Article  Google Scholar 

Cranenburgh RM, Hanak JA, Williams SG, Sherratt DJ. Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res. 2001;29(5):e26–e.

Article  Google Scholar 

Kang CW, Lim HG, Yang J, Noh MH, Seo SW, Jung GY. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metab Eng. 2018;48:121–8.

Article  Google Scholar 

Tschirhart T, Shukla V, Kelly EE, Schultzhaus Z, NewRingeisen E, Erickson JS, et al. Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS Synth Biol. 2019;8(9):2069–79.

Article  Google Scholar 

Scarlata CJ, Hyman DA. Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products. J Chromatogr A. 2010;1217(14):2082–7.

Article  Google Scholar 

Stanton BC, Nielsen AA, Tamsir A, Clancy K, Peterson T, Voigt CA. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol. 2014;10(2):99–105.

Article  Google Scholar 

Cummings H, Sands JF, Foreman PC, Fraser J, Hershey J. Structure and expression of the infA operon encoding translational initiation factor IF1. Transcriptional control by growth rate. J Biol Chem. 1991;266(25):16491–8.

Article  Google Scholar 

Sathesh-Prabu C, Tiwari R, Lee SK. Substrate-inducible and antibiotic-free high-level 4-hydroxyvaleric acid production in engineered Escherichia coli. Front Bioeng Biotechnol. 2022;10:960907.

Article  Google Scholar 

Cummings HS, Hershey J. Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J Bacteriol. 1994;176(1):198–205.

Article  Google Scholar 

Rodrigues JL, Rodrigues LR. Potential applications of the Escherichia coli heat shock response in synthetic biology. Trends Biotechnol. 2018;36(2):186–98.

Article  Google Scholar 

Bonner W, Hulett H, Sweet R, Herzenberg L. Fluorescence activated cell sorting. Rev Sci Instrum. 1972;43(3):404–9.

Article  Google Scholar 

Held D, Yaeger K, Novy R. New coexpression vectors for expanded compatibilities in E. Coli. InNovations. 2003;18(3).

Kim S-W, Kim J-B, Ryu J-M, Jung J-K, Kim J-H. High-level production of lycopene in metabolically engineered E. Coli. Process Biochem. 2009;44(8):899–905.

Article  Google Scholar 

Zhang Z, Chu R, Wei W, Song W, Ye C, Chen X, et al. Systems engineering of Escherichia coli for high-level glutarate production from glucose. Nat Commun. 2024;15(1):1032.

Article  Google Scholar 

Noh MH, Lim HG, Woo SH, Song J, Jung GY. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnol Bioeng. 2018;115(3):729–38.

Article  Google Scholar 

Okabe M, Lies D, Kanamasa S, Park EY. Biotechnological production of itaconic acid and its biosynthesis in aspergillus terreus. Appl Microbiol Biotechnol. 2009;84:597–606.

Article  Google Scholar 

Jeon HG, Cheong DE, Han Y, Song JJ, Choi JH. Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5′‐coding region variant of the cadA gene. Biotechnol Bioeng. 2016;113(7):1504–10.

Article  Google Scholar 

Muthukrishnan A-B, Kandhavelu M, Lloyd-Price J, Kudasov F, Chowdhury S, Yli-Harja O, Ribeiro AS. Dynamics of transcription driven by the tetA promoter, one event at a time, in live Escherichia coli cells. Nucleic Acids Res. 2012;40(17):8472–83.

Article  Google Scholar 

Tran K-NT, Jeong J, Hong SH. Engineering of itaconic acid pathway via co-localization of CadA and AcnA in recombinant Escherichia coli. Biotechnol Lett. 2024:1–8.

Camps M. Modulation of ColE1-like plasmid replication for recombinant gene expression. Recent Pat DNA Gene Sequences (Discontinued). 2010;4(1):58–73.

Article  Google Scholar 

Aoki H, Dekany K, Adams S-L, Ganoza MC. The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J Biol Chem. 1997;272(51):32254–9.

Article  Google Scholar 

Hou Y, Lin Y-P, Sharer JD, March P. In vivo selection of conditional-lethal mutations in the gene encoding elongation factor G of Escherichia coli. J Bacteriol. 1994;176(1):123–9.

Article  Google Scholar 

Comments (0)

No login
gif