Prolyl hydroxylase domain inhibitors prevent kidney crystal formation by suppressing inflammation

Khan SR, Pearle MS, Robertson WG et al (2016) Kidney stones. Nat Rev Dis Primers 2:16008. https://doi.org/10.1038/nrdp.2016.8

Article  PubMed  PubMed Central  Google Scholar 

Shoag J, Halpern J, Goldfarb DS, Eisner BH (2014) Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J Urol 192:1440–1445. https://doi.org/10.1016/j.juro.2014.05.117

Article  PubMed  Google Scholar 

El-Zoghby ZM, Lieske JC, Foley RN et al (2012) Urolithiasis and the risk of ESRD. Clin J Am Soc Nephrol 7:1409–1415. https://doi.org/10.2215/CJN.03210312

Article  PubMed  PubMed Central  Google Scholar 

Kohri K, Yasui T, Okada A et al (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637. https://doi.org/10.1007/s00240-012-0514-y

Article  CAS  PubMed  Google Scholar 

Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 61:105–112. https://doi.org/10.1046/j.1523-1755.2002.00106.x

Article  CAS  PubMed  Google Scholar 

Taguchi K, Hamamoto S, Okada A et al (2017) Genome-wide gene expression profiling of Randall’s plaques in calcium oxalate stone formers. J Am Soc Nephrol 28:333–347. https://doi.org/10.1681/ASN.2015111271

Article  CAS  PubMed  Google Scholar 

Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665. https://doi.org/10.1056/NEJMra0910283

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor ER, Stoller ML (2015) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl 1):41–45. https://doi.org/10.1007/s00240-014-0718-4

Article  PubMed  Google Scholar 

Tanaka T (2016) Expanding roles of the hypoxia-response network in chronic kidney disease. Clin Exp Nephrol 20:835–844. https://doi.org/10.1007/s10157-016-1241-4

Article  CAS  PubMed  Google Scholar 

Rosenberger C, Mandriota S, Jürgensen JS et al (2002) Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13:1721–1732. https://doi.org/10.1097/01.asn.0000017223.49823.2a

Article  CAS  PubMed  Google Scholar 

Maxwell PH, Eckardt KU (2016) HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 12:157–168. https://doi.org/10.1038/nrneph.2015.193

Article  CAS  PubMed  Google Scholar 

Schödel J, Ratcliffe PJ (2019) Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 15:641–659. https://doi.org/10.1038/s41581-019-0182-z

Article  PubMed  Google Scholar 

Warnecke C, Zaborowska Z, Kurreck J et al (2004) Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells. FASEB J 18:1462–1464. https://doi.org/10.1096/fj.04-1640fje

Article  CAS  PubMed  Google Scholar 

Sugahara M, Tanaka S, Tanaka T et al (2020) Prolyl hydroxylase domain inhibitor protects against metabolic disorders and associated kidney disease in obese type 2 diabetic mice. J Am Soc Nephrol 31:560–577. https://doi.org/10.1681/ASN.2019060582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Provenzano R, Fishbane S, Szczech L et al (2021) Pooled analysis of roxadustat for anemia in patients with kidney failure incident to dialysis. Kidney Int Rep 6:613–623. https://doi.org/10.1016/j.ekir.2020.12.018

Article  PubMed  Google Scholar 

Dhillon S (2019) Roxadustat: first global approval. Drugs 79:563–572. https://doi.org/10.1007/s40265-019-01077-1

Article  CAS  PubMed  Google Scholar 

Ugawa T, Ashizaki M, Murata A et al (2021) Roxadustat (Evrenzo® tablet), a therapeutic drug for renal anemia: pharmacological characteristics and clinical evidence in Japan. Nihon Yakurigaku Zasshi 156:187–197. https://doi.org/10.1254/fpj.21001

Article  CAS  PubMed  Google Scholar 

Unno R, Kawabata T, Taguchi K et al (2020) Deregulated MTOR (mechanistic target of rapamycin kinase) is responsible for autophagy defects exacerbating kidney stone development. Autophagy 16:709–723. https://doi.org/10.1080/15548627.2019.1635382

Article  CAS  PubMed  Google Scholar 

Li X, Cui XX, Chen YJ et al (2018) Therapeutic potential of a prolyl hydroxylase inhibitor FG-4592 for Parkinson’s diseases in vitro and in vivo: regulation of redox biology and mitochondrial function. Front Aging Neurosci 10:121. https://doi.org/10.3389/fnagi.2018.00121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo L, Tozawa K, Okada A et al (2014) A paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment. J Urol 191:1906–1912. https://doi.org/10.1016/j.juro.2014.01.013

Article  CAS  PubMed  Google Scholar 

Taguchi K, Okada A, Hamamoto S et al (2016) M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep 6:35167. https://doi.org/10.1038/srep35167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada A, Nomura S, Higashibata Y et al (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 35:89–99. https://doi.org/10.1007/s00240-007-0082-8

Article  CAS  PubMed  Google Scholar 

Pizzolato P (1964) Histochemical recognition of calcium oxalate. J Histochem Cytochem 12:333–336. https://doi.org/10.1177/12.5.333

Article  CAS  PubMed  Google Scholar 

Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

Article  CAS  PubMed  Google Scholar 

Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc 9:89–100; discussion 100

Okada A, Yasui T, Hamamoto S et al (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924. https://doi.org/10.1359/jbmr.081245

Article  CAS  PubMed  Google Scholar 

Hamamoto S, Nomura S, Yasui T et al (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25:2712–2723. https://doi.org/10.1359/jbmr.090520

Article  CAS  PubMed  Google Scholar 

Okada A, Nomura S, Saeki Y et al (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637. https://doi.org/10.1359/jbmr.080514

Article  CAS  PubMed  Google Scholar 

Kong G, Hua H, Lu Y et al (2024) Roxadustat ameliorates experimental colitis in mice by regulating macrophage polarization through increasing HIF level. Biochim Biophys Acta Gen Subj 1868:130548. https://doi.org/10.1016/j.bbagen.2023.130548

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif