Disrupting Notch signaling related HES1 in myeloid cells reinvigorates antitumor T cell responses

Jia QZ, Wang AY, Yuan YX, Zhu B, Long HX. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol. 2022. https://doi.org/10.1186/s40164-022-00277-y.

Article  PubMed  PubMed Central  Google Scholar 

Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23(8):1148–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang JC, Li RF, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol. 2022;12: 951019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng CF, Zhang Q, Jia MD, Zhao J, Sun X, Gong T, Zhang ZR. Tumors and their microenvironment dual-targeting chemotherapy with local immune adjuvant therapy for effective antitumor immunity against breast cancer. Adv Sci. 2019;6(6):1801868.

Article  Google Scholar 

Xiao ZC, Su ZW, Han SS, Huang JS, Lin LT, Shoai XT. Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-kappa B inhibitor for antitumor immunotherapy. Sci Adv. 2020;6(6):eaay7785.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kubota K, Moriyama M, Furukawa S, Rafiul HASM, Maruse Y, Jinno T, Tanaka A, Ohta M, Ishiguro N, Yamauchi M, et al. CD163(+) CD204(+) tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci Rep-Uk. 2017;7(1):1755.

Article  Google Scholar 

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18(5):349–55.

Article  CAS  PubMed  Google Scholar 

Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15:61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goral A, Sledz M, Manda-Handzlik A, Cieloch A, Wojciechowska A, Lachota M, Mroczek A, Demkow U, Zagozdzon R, Matusik K, et al. Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia. Exp Hematol Oncol. 2023;12(1):89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu YZ, Yi M, Niu MK, Mei Q, Wu KM. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer. 2022;21:184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang QM, He Y, Luo N, Patel SJ, Han YJ, Gao RR, Modak M, Carotta S, Haslinger C, Kind D, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179(4):829-845.e20.

Article  CAS  PubMed  Google Scholar 

Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, Brunazzi EA, Vignali KM, Sun M, Stolz DB, et al. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8(+) T cell-derived interferon-gamma. Immunity. 2019;51(2):381-397.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nixon BG, Kuo FS, Ji LL, Liu M, Capistrano K, Do M, Franklin RA, Wu XD, Kansler ER, Srivastava RM, et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer. Immunity. 2022;55(11):2044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bied M, Ho WW, Ginhoux F, Blériot C. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol. 2023;20(9):983–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang RZ, Kang T, Chen SY. The role of tumor-associated macrophages in tumor immune evasion. J Cancer Res Clin. 2024;150(5):238.

Article  CAS  Google Scholar 

Guo SS, Chen XJ, Guo CH, Wang W. Tumour-associated macrophages heterogeneity drives resistance to clinical therapy. Expert Rev Mol Med. 2022;24: e17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li XX, Yan XC, Wang YF, Kaur B, Han H, Yu JH. The Notch signaling pathway: a potential target for cancer immunotherapy. J Hematol Oncol. 2023. https://doi.org/10.1186/s13045-023-01439-z.

Article  PubMed  PubMed Central  Google Scholar 

Bortolomeazzi M, Keddar MR, Montorsi L, Acha-Sagredo A, Benedetti L, Temelkovski D, Choi S, Petrov N, Todd K, Wai P, et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts. Gastroenterology. 2021;161(4):1179–93.

Article  CAS  PubMed  Google Scholar 

Kawaguchi Y, Ohshio Y, Watanabe A, Shiratori T, Okamoto K, Ueda K, Kataoka Y, Suzuki T, Hanaoka J. Depletion of tumor-associated macrophages inhibits lung cancer growth and enhances the antitumor effect of cisplatin. Cancer Sci. 2023;114(3):750–63.

Article  CAS  PubMed  Google Scholar 

Guo RQ, Hu FX, Weng QT, Lv C, Wu HL, Liu LJ, Li ZC, Zeng Y, Bai ZJ, Zhang MY, et al. Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res. 2020. https://doi.org/10.1038/s41422-019-0251-7.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Wang XM, Ma XR, Liu C, Wu JB, Sun CG. Natural polysaccharides and their derivates: a promising natural adjuvant for tumor immunotherapy. Front Pharmacol. 2021;12: 621813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao JL, Ye YC, Gao CC, Wang L, Ren KX, Jiang R, Hu SJ, Liang SQ, Bai J, Liang JL, et al. Notch-mediated lactate metabolism regulates MDSC development through the Hes1/MCT2/c-Jun axis. Cell Rep. 2022;38(10): 110451.

Article  CAS  PubMed  Google Scholar 

Zhou BH, Lin WL, Long YL, Yang YK, Zhang H, Wu KM, Chu Q. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Therapy. 2022;7:95.

Article  Google Scholar 

Capodanno Y, Buishand FO, Pang LY, Kirpensteijn J, Mol JA, Argyle DJ. Notch pathway inhibition targets chemoresistant insulinoma cancer stem cells. Endocr-Relat Cancer. 2018;25(2):131–44.

Article  CAS  PubMed  Google Scholar 

Li XY, Cao Y, Li M, Jin F. Upregulation of HES1 promotes cell proliferation and invasion in breast cancer as a prognosis marker and therapy target via the AKT pathway and EMT process. J Cancer. 2018;9(4):757–66.

Article  PubMed  PubMed Central  Google Scholar 

Li XY, Li Y, Du XQ, Wang X, Guan S, Cao Y, Li F, Jin F. HES1 promotes breast cancer stem cells by elevating Slug in triple-negative breast cancer. Int J Biol Sci. 2021;17(1):247–58.

Article 

Comments (0)

No login
gif