Circadian Regulation of Fatty Acid Metabolism in Humans: Is There Evidence of an Optimal Time Window for Maximizing Fat Oxidation During Exercise?

Brun JF, Myzia J, Varlet-Marie E, Raynaud de Mauverger E, Mercier J. Beyond the calorie paradigm: taking into account in practice the balance of fat and carbohydrate oxidation during exercise? Nutrients. 2022; 14(8):1605; https://doi.org/10.3390/nu14081605.

Brun JF, Malatesta D, Sartorio A. Maximal lipid oxidation during exercise: a target for individualizing endurance training in obesity and diabetes? J Endocrinol Investig. 2012;35(7):686–91. https://doi.org/10.3275/8466.

Article  CAS  Google Scholar 

Chávez-Guevara IA, Urquidez-Romero R, Pérez-León JA, González-Rodríguez E, Moreno-Brito V, Ramos-Jiménez A. Chronic effect of fatmax training on body weight, fat mass, and cardiorespiratory fitness in obese subjects: a meta-analysis of randomized clinical trials. Int J Environ Res Public Health. 2020;17(21):7888: https://doi.org/10.3390/ijerph17217888.

Chávez-Guevara IA, Amaro-Gahete FJ, Ramos-Jiménez A, Brun JF. Toward exercise guidelines for optimizing fat oxidation during exercise in obesity: a systematic review and meta-regression. Sports Med. 2023;53(12):2399–416. https://doi.org/10.1007/s40279-023-01897-y.

Article  PubMed  Google Scholar 

Amaro-Gahete FJ, Jurado-Fasoli L, Triviño AR, Sánchez-Delgado G, de la OA, Helge J, et al. Diurnal variation of maximal fat-oxidation rate in trained male athletes. Int J Sport Physiol Perform. 2019;14(8):1140–6. https://doi.org/10.1123/ijspp.2018-0854.

Mohebbi H, Azizi M. Maximal fat oxidation at the different exercise intensity in obese and normal weight men in the morning and evening. J Hum Sport Exerc. 2011;6(1):49–58. https://doi.org/10.4100/jhse.2011.61.06.

Article  Google Scholar 

Methnani J, Brahim MM, Elhraiech A, Ach T, Latiri I, Zaouali M, et al. Timing matters: diurnal variation of maximal fat oxidation and substrate oxidation rates in metabolic syndrome-a randomized crossover study. Eur J Appl Physiol. 2024. https://doi.org/10.1007/s00421-024-05518-y.

Chávez-Guevara IA, Peric R, Amaro-Gahete FJ, Ramos-Jiménez A. Reliability of the metabolic response during steady-state exercise at FATmax in young men with obesity. Res Q Exerc Sport. 2024. https://doi.org/10.1080/02701367.2024.2311641.

Chrzanowski-Smith OJ, Edinburgh RM, Thomas MP, Haralabidis N, Williams S, Betts JA, et al. The day-to-day reliability of peak fat oxidation and FATMAX. Eur J Appl Physiol. 2020;120(8):1745–59. https://doi.org/10.1007/s00421-020-04397-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Hooren B, Souren T, Bongers BC. Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated and human exercise. Scand J Med Sci Sports. 2024;34(1): e14490. https://doi.org/10.1111/sms.14490.

Article  PubMed  Google Scholar 

Gould LM, Gordon AN, Cabre HE, Hoyle AT, Ryan ED, Hackney AC, et al. Metabolic effects of menopause: a cross-sectional characterization of body composition and exercise metabolism. Menopause. 2022;29(4):377–89. https://doi.org/10.1097/GME.0000000000001932.

Article  PubMed  Google Scholar 

Robles-González L, Aguilar-Navarro M, López-Samanes Á, Ruiz-Moreno C, Muñoz A, Varillas-Delgado D, et al. No diurnal variation is present in maximal fat oxidation during exercise in young healthy women: a cross-over study. Eur J Sport Sci. 2023;23(6):936–42. https://doi.org/10.1080/174391.2022.2067007.

Article  PubMed  Google Scholar 

Wefers J, Connell NJ, Fealy CE, Andriessen C, de Wit V, van Moorsel D, et al. Day-night rhythm of skeletal muscle metabolism is disturbed in older, metabolically compromised individuals. Mol Metab. 2020;41: 101050. https://doi.org/10.1016/j.molmet.2020.101050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Tanaka Y, Ishihara A, Uchizawa A, Park I, Iwayama K, et al. Metabolic flexibility during sleep. Sci Rep. 2021;11(1):17849. https://doi.org/10.1038/s41598-021-97301-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson SL, Chambers ES, Fletcher G, Wallis GA. Lipolytic markers, insulin and resting fat oxidation are associated with maximal fat oxidation. Int J Sports Med. 2016. https://doi.org/10.1055/s-0042-100291.

Jurado-Fasoli L, Amaro-Gahete FJ, Merchan-Ramirez E, Labayen I, Ruiz JR. Relationships between diet and basal fat oxidation and maximal fat oxidation during exercise in sedentary adults. Nutr Metab Cardiovasc Dis. 2021;31(4):1087–101. https://doi.org/10.1016/j.numecd.2020.11.021.

Article  CAS  PubMed  Google Scholar 

Rosenkilde M, Nordby P, Nielsen LB, Stallknecht BM, Helge JW. Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men. Int J Obes (Lond). 2010;34(5):871–7. https://doi.org/10.1038/ijo.2010.11.

Article  CAS  PubMed  Google Scholar 

Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004;22(1):31–8. https://doi.org/10.1080/0264041031000140536.

Article  PubMed  Google Scholar 

Paranjpe DA, Sharma VK. Evolution of temporal order in living organisms. J Circadian Rhythms. 2005;3(1):7. https://doi.org/10.1186/1740-3391-3-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horne JÁ, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.

CAS  PubMed  Google Scholar 

Scott E, Carter A, Grant P. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes. 2008;32:658–62. https://doi.org/10.1038/sj.ijo.0803778.

Article  CAS  Google Scholar 

Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol. 2019;13(5):411–24. https://doi.org/10.1080/17474124.2019.1595588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. Wiley Interdiscip Rev Syst Biol Med. 2019;11(2): e1439. https://doi.org/10.1002/wsbm.1439.

Article  PubMed  Google Scholar 

Gentry NW, Ashbrook LH, Fu YH, Ptáček LJ. Human circadian variations. J Clin Investig. 2021. https://doi.org/10.1172/JCI148282.

Ángeles-Castellanos M, Rodríguez K, Salgado R, Escobar C. Medical chronobiology. Physiology and patophysiology of biological rhytms. Rev Fac Med UNAM. 2007;50(6):238–41.

Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62. https://doi.org/10.1146/annurev-neuro-060909-153128.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare ML, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther. 2022;7(1):41. https://doi.org/10.1038/s41392-022-00899-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gooley JJ. Circadian regulation of lipid metabolism. Proc Nutr Soc. 2016;75(4):440–50. https://doi.org/10.1017/S0029665116000288.

Article  CAS  PubMed  Google Scholar 

Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 2007;447(7143):477–81. https://doi.org/10.1038/nature05767.

Article  CAS  PubMed  Google Scholar 

Arredondo-Amador M, Zambrano C, Kulyté A, Luján J, Hu K, Sánchez de Medina F, et al. Circadian rhythms in hormone-sensitive lipase in human adipose tissue: relationship to meal timing and fasting duration. J Clin Endocrinol Metab. 2020;105(12):e4407–416. https://doi.org/10.1210/clinem/dgaa492.

Chrzanowski-Smith OJ, Edinburgh RM, Smith E, Thomas MP, Walhin JP, Koumanov F, et al. Resting skeletal muscle PNPLA2 (ATGL) and CPT1B are associated with peak fat oxidation rates in men and women but do not explain observed sex differences. Exp Physiol. 2021;106(5):1208–23. https://doi.org/10.1113/EP089431.

Article  CAS  PubMed  Google Scholar 

Shaw CS, Swinton C, Morales-Scholz MG, McRae N, Erftemeyer T, Aldous A, et al. Impact of exercise training status on the fiber type-specific abundance of proteins regulating intramuscular lipid metabolism. J Appl Physiol. (Bethesda, Md.: 1985). 2020;128(2):379–89. https://doi.org/10.1152/japplphysiol.00797.2019.

Maunder E, Rothschild JA, Fritzen AM, Jordy AB, Kiens B, Bric MJ, et al. Skeletal muscle proteins involved in fatty acid transport influence fatty acid oxidation rates observed during exercise. Pflugers Arch. 2023;475(9):1061–72. https://doi.org/10.1007/s00424-023-02843-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshino J, Almeda-Valdes P, Patterson BW, Okunade AL, Imai S, Mittendorfer B, et al. Diurnal variation in insulin sensitivity of glucose metabolism is associated with diurnal variations in whole-body and cellular fatty acid metabolism in metabolically normal women. J Clin Endocrinol Metab. 2014;99(9):E1666–70. https://doi.org/10.1210/jc.2014-1579.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15:3. https://doi.org/10.1186/s12970-018-0207-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif