HMG-CoA reductase inhibitor simvastatin ameliorates trimethyltin neurotoxicity and cognitive impairment through reversal of Alzheimer’s-associated markers

Allam EAH, Assi AA, Badary DM, Farrag MMY, Nicola MA (2024) Memantine versus Ginkgo biloba extract: a comparative study on cognitive dysfunction treatment in a novel rat model. Planta Med. https://doi.org/10.1055/a-2245-3624

Article  PubMed  Google Scholar 

Atef MM, Mostafa YM, Ahmed AAM, El-Sayed NM (2023) Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/ SMAD2 and GSK3β/β-catenin signalling pathways. Environ Toxicol Pharmacol 102:104220. https://doi.org/10.1016/j.etap.2023.104220

Article  CAS  PubMed  Google Scholar 

Bagga S, Kumar M (2023) Current status of Alzheimer’s disease and pathological mechanisms investigating the therapeutic molecular targets. Curr Mol Med 23:492–508. https://doi.org/10.2174/1566524022666220404112843

Article  CAS  PubMed  Google Scholar 

Bahlakeh G, Rahbarghazi R, Abedelahi A, Sadigh-Eteghad S, Karimipour M (2022) Neurotrophic factor-secreting cells restored endogenous hippocampal neurogenesis through the Wnt/β-catenin signaling pathway in AD model mice. Stem Cell Res Ther 13:343. https://doi.org/10.1186/s13287-022-03024-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown BM, Peiffer J, Rainey-Smith SR (2019) Exploring the relationship between physical activity, beta-amyloid and tau: a narrative review. Ageing Res Rev 50:9–18. https://doi.org/10.1016/j.arr.2019.01.003

Article  CAS  PubMed  Google Scholar 

C ON (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48:647–653. https://doi.org/10.1016/j.exger.2013.02.025

Article  CAS  Google Scholar 

Carloni S, Mazzoni E, Cimino M, De Simoni MG, Perego C, Scopa C, Balduini W (2006) Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat. Neurobiol Dis 21:119–126. https://doi.org/10.1016/j.nbd.2005.06.014

Article  CAS  PubMed  Google Scholar 

Casalbore P, Barone I, Felsani A, D’Agnano I, Michetti F, Maira G, Cenciarelli C (2010) Neural stem cells modified to express BDNF antagonize trimethyltin-induced neurotoxicity through PI3K/Akt and MAP kinase pathways. J Cell Physiol 224:710–721. https://doi.org/10.1002/jcp.22170

Article  CAS  PubMed  Google Scholar 

Catalão CHR, Santos-Junior NN, da Costa LHA, Souza AO, Cárnio EC, Sebollela A, Alberici LC, Rocha MJA (2020) Simvastatin prevents long-term cognitive deficits in sepsis survivor rats by reducing neuroinflammation and neurodegeneration. Neurotox Res 38:871–886. https://doi.org/10.1007/s12640-020-00222-z

Article  CAS  PubMed  Google Scholar 

Chang W, An J, Seol GH, Han SH, Yee J, Min SS (2022) Trans-anethole alleviates trimethyltin chloride-induced impairments in long-term potentiation. Pharmaceutics 14. https://doi.org/10.3390/pharmaceutics14071422

Chen ZR, Huang JB, Yang SL, Hong FF (2022) Role of cholinergic signaling in Alzheimer’s disease. Molecules 27. https://doi.org/10.3390/molecules27061816

Cibickova L, Hyspler R, Micuda S, Cibicek N, Zivna H, Jun D, Ticha A, Brcakova E, Palicka V (2009) The influence of simvastatin, atorvastatin and high-cholesterol diet on acetylcholinesterase activity, amyloid beta and cholesterol synthesis in rat brain. Steroids 74:13–19. https://doi.org/10.1016/j.steroids.2008.08.007

Article  CAS  PubMed  Google Scholar 

Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84:413–428. https://doi.org/10.1016/s0163-7258(99)00045-5

Article  CAS  PubMed  Google Scholar 

Dillon GM, Qu X, Marcus JN, Dodart JC (2008) Excitotoxic lesions restricted to the dorsal CA1 field of the hippocampus impair spatial memory and extinction learning in C57BL/6 mice. Neurobiol Learn Mem 90:426–433. https://doi.org/10.1016/j.nlm.2008.05.008

Article  PubMed  Google Scholar 

Earley B, Burke M, Leonard BE (1992) Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat. Neurochem Int 21:351–366. https://doi.org/10.1016/0197-0186(92)90186-u

Article  CAS  PubMed  Google Scholar 

El-Dessouki AM, Galal MA, Awad AS, Zaki HF (2017) Neuroprotective effects of Simvastatin and cilostazol in L-Methionine-Induced vascular dementia in rats. Mol Neurobiol 54:5074–5084. https://doi.org/10.1007/s12035-016-0051-8

Article  CAS  PubMed  Google Scholar 

Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 98:5856–5861. https://doi.org/10.1073/pnas.081620098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao K, Shen Z, Yuan Y, Han D, Song C, Guo Y, Mei X (2016) Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury. J Neurochem 138:139–149. https://doi.org/10.1111/jnc.13382

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geloso MC, Vinesi P, Michetti F (1998) Neuronal subpopulations of developing rat hippocampus containing different calcium-binding proteins behave distinctively in trimethyltin-induced neurodegeneration. Exp Neurol 154:645–653. https://doi.org/10.1006/exnr.1998.6949

Article  CAS  PubMed  Google Scholar 

Geloso MC, Vercelli A, Corvino V, Repici M, Boca M, Haglid K, Zelano G, Michetti F (2002) Cyclooxygenase-2 and caspase 3 expression in trimethyltin-induced apoptosis in the mouse hippocampus. Exp Neurol 175:152–160. https://doi.org/10.1006/exnr.2002.7866

Article  CAS  PubMed  Google Scholar 

Geloso MC, Corvino V, Michetti F (2011a) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58:729–738. https://doi.org/10.1016/j.neuint.2011.03.009

Article  CAS  PubMed  Google Scholar 

Geloso MC, Corvino V, Michetti F (2011b) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58:729–738. https://doi.org/10.1016/j.neuint.2011.03.009

Article  CAS  PubMed  Google Scholar 

Go MJ, Kim JM, Lee HL, Kim TY, Joo SG, Kim JH, Lee HS, Kim DO, Heo HJ (2023) Anti-amnesia-like effect of pinus densiflora extract by improving apoptosis and neuroinflammation on trimethyltin-induced ICR mice. Int J Mol Sci 24. https://doi.org/10.3390/ijms241814084

Goedert M, Spillantini MG, Crowther RA (1991) Tau proteins and neurofibrillary degeneration. Brain Pathol 1:279–286. https://doi.org/10.1111/j.1750-3639.1991.tb00671.x

Article  CAS  PubMed  Google Scholar 

Holahan MR, Routtenberg A (2011) Lidocaine injections targeting CA3 hippocampus impair long-term spatial memory and prevent learning-induced mossy fiber remodeling. Hippocampus 21:532–540. https://doi.org/10.1002/hipo.20786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou J, Xue J, Wang Z, Li W (2018) Ginsenoside Rg3 and Rh2 protect trimethyltin-induced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation. Phytother Res 32:2531–2540. https://doi.org/10.1002/ptr.6193

Article  CAS  PubMed  Google Scholar 

Jafari M, Hojati V, Khaksari M, Vaezi G (2021) Simvastatin attenuates spatial memory impairment via inhibiting microgliosis and apoptotic cell death against ethanol induced neurotoxicity in the developing rat hippocampus. Brain Res 1758:147341. https://doi.org/10.1016/j.brainres.2021.147341

Article  CAS  PubMed  Google Scholar 

Jenkins SM, Barone S (2004) The neurotoxicant trimethyltin induces apoptosis via caspase activation, p38 protein kinase, and oxidative stress in PC12 cells. Toxicol Lett 147:63–72. https://doi.org/10.1016/j.toxlet.2003.10.023

Article  CAS  PubMed  Google Scholar 

Jin N, Zhu H, Liang X, Huang W, Xie Q, Xiao P, Ni J, Liu Q (2017) Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer’s disease. Exp Neurol 297:36–49. https://doi.org/10.1016/j.expneurol.2017.07.006

Article  CAS  PubMed 

Comments (0)

No login
gif