Allam EAH, Assi AA, Badary DM, Farrag MMY, Nicola MA (2024) Memantine versus Ginkgo biloba extract: a comparative study on cognitive dysfunction treatment in a novel rat model. Planta Med. https://doi.org/10.1055/a-2245-3624
Atef MM, Mostafa YM, Ahmed AAM, El-Sayed NM (2023) Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/ SMAD2 and GSK3β/β-catenin signalling pathways. Environ Toxicol Pharmacol 102:104220. https://doi.org/10.1016/j.etap.2023.104220
Article CAS PubMed Google Scholar
Bagga S, Kumar M (2023) Current status of Alzheimer’s disease and pathological mechanisms investigating the therapeutic molecular targets. Curr Mol Med 23:492–508. https://doi.org/10.2174/1566524022666220404112843
Article CAS PubMed Google Scholar
Bahlakeh G, Rahbarghazi R, Abedelahi A, Sadigh-Eteghad S, Karimipour M (2022) Neurotrophic factor-secreting cells restored endogenous hippocampal neurogenesis through the Wnt/β-catenin signaling pathway in AD model mice. Stem Cell Res Ther 13:343. https://doi.org/10.1186/s13287-022-03024-6
Article CAS PubMed PubMed Central Google Scholar
Brown BM, Peiffer J, Rainey-Smith SR (2019) Exploring the relationship between physical activity, beta-amyloid and tau: a narrative review. Ageing Res Rev 50:9–18. https://doi.org/10.1016/j.arr.2019.01.003
Article CAS PubMed Google Scholar
C ON (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48:647–653. https://doi.org/10.1016/j.exger.2013.02.025
Carloni S, Mazzoni E, Cimino M, De Simoni MG, Perego C, Scopa C, Balduini W (2006) Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat. Neurobiol Dis 21:119–126. https://doi.org/10.1016/j.nbd.2005.06.014
Article CAS PubMed Google Scholar
Casalbore P, Barone I, Felsani A, D’Agnano I, Michetti F, Maira G, Cenciarelli C (2010) Neural stem cells modified to express BDNF antagonize trimethyltin-induced neurotoxicity through PI3K/Akt and MAP kinase pathways. J Cell Physiol 224:710–721. https://doi.org/10.1002/jcp.22170
Article CAS PubMed Google Scholar
Catalão CHR, Santos-Junior NN, da Costa LHA, Souza AO, Cárnio EC, Sebollela A, Alberici LC, Rocha MJA (2020) Simvastatin prevents long-term cognitive deficits in sepsis survivor rats by reducing neuroinflammation and neurodegeneration. Neurotox Res 38:871–886. https://doi.org/10.1007/s12640-020-00222-z
Article CAS PubMed Google Scholar
Chang W, An J, Seol GH, Han SH, Yee J, Min SS (2022) Trans-anethole alleviates trimethyltin chloride-induced impairments in long-term potentiation. Pharmaceutics 14. https://doi.org/10.3390/pharmaceutics14071422
Chen ZR, Huang JB, Yang SL, Hong FF (2022) Role of cholinergic signaling in Alzheimer’s disease. Molecules 27. https://doi.org/10.3390/molecules27061816
Cibickova L, Hyspler R, Micuda S, Cibicek N, Zivna H, Jun D, Ticha A, Brcakova E, Palicka V (2009) The influence of simvastatin, atorvastatin and high-cholesterol diet on acetylcholinesterase activity, amyloid beta and cholesterol synthesis in rat brain. Steroids 74:13–19. https://doi.org/10.1016/j.steroids.2008.08.007
Article CAS PubMed Google Scholar
Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84:413–428. https://doi.org/10.1016/s0163-7258(99)00045-5
Article CAS PubMed Google Scholar
Dillon GM, Qu X, Marcus JN, Dodart JC (2008) Excitotoxic lesions restricted to the dorsal CA1 field of the hippocampus impair spatial memory and extinction learning in C57BL/6 mice. Neurobiol Learn Mem 90:426–433. https://doi.org/10.1016/j.nlm.2008.05.008
Earley B, Burke M, Leonard BE (1992) Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat. Neurochem Int 21:351–366. https://doi.org/10.1016/0197-0186(92)90186-u
Article CAS PubMed Google Scholar
El-Dessouki AM, Galal MA, Awad AS, Zaki HF (2017) Neuroprotective effects of Simvastatin and cilostazol in L-Methionine-Induced vascular dementia in rats. Mol Neurobiol 54:5074–5084. https://doi.org/10.1007/s12035-016-0051-8
Article CAS PubMed Google Scholar
Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 98:5856–5861. https://doi.org/10.1073/pnas.081620098
Article CAS PubMed PubMed Central Google Scholar
Gao K, Shen Z, Yuan Y, Han D, Song C, Guo Y, Mei X (2016) Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury. J Neurochem 138:139–149. https://doi.org/10.1111/jnc.13382
Article CAS PubMed PubMed Central Google Scholar
Geloso MC, Vinesi P, Michetti F (1998) Neuronal subpopulations of developing rat hippocampus containing different calcium-binding proteins behave distinctively in trimethyltin-induced neurodegeneration. Exp Neurol 154:645–653. https://doi.org/10.1006/exnr.1998.6949
Article CAS PubMed Google Scholar
Geloso MC, Vercelli A, Corvino V, Repici M, Boca M, Haglid K, Zelano G, Michetti F (2002) Cyclooxygenase-2 and caspase 3 expression in trimethyltin-induced apoptosis in the mouse hippocampus. Exp Neurol 175:152–160. https://doi.org/10.1006/exnr.2002.7866
Article CAS PubMed Google Scholar
Geloso MC, Corvino V, Michetti F (2011a) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58:729–738. https://doi.org/10.1016/j.neuint.2011.03.009
Article CAS PubMed Google Scholar
Geloso MC, Corvino V, Michetti F (2011b) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58:729–738. https://doi.org/10.1016/j.neuint.2011.03.009
Article CAS PubMed Google Scholar
Go MJ, Kim JM, Lee HL, Kim TY, Joo SG, Kim JH, Lee HS, Kim DO, Heo HJ (2023) Anti-amnesia-like effect of pinus densiflora extract by improving apoptosis and neuroinflammation on trimethyltin-induced ICR mice. Int J Mol Sci 24. https://doi.org/10.3390/ijms241814084
Goedert M, Spillantini MG, Crowther RA (1991) Tau proteins and neurofibrillary degeneration. Brain Pathol 1:279–286. https://doi.org/10.1111/j.1750-3639.1991.tb00671.x
Article CAS PubMed Google Scholar
Holahan MR, Routtenberg A (2011) Lidocaine injections targeting CA3 hippocampus impair long-term spatial memory and prevent learning-induced mossy fiber remodeling. Hippocampus 21:532–540. https://doi.org/10.1002/hipo.20786
Article CAS PubMed PubMed Central Google Scholar
Hou J, Xue J, Wang Z, Li W (2018) Ginsenoside Rg3 and Rh2 protect trimethyltin-induced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation. Phytother Res 32:2531–2540. https://doi.org/10.1002/ptr.6193
Article CAS PubMed Google Scholar
Jafari M, Hojati V, Khaksari M, Vaezi G (2021) Simvastatin attenuates spatial memory impairment via inhibiting microgliosis and apoptotic cell death against ethanol induced neurotoxicity in the developing rat hippocampus. Brain Res 1758:147341. https://doi.org/10.1016/j.brainres.2021.147341
Article CAS PubMed Google Scholar
Jenkins SM, Barone S (2004) The neurotoxicant trimethyltin induces apoptosis via caspase activation, p38 protein kinase, and oxidative stress in PC12 cells. Toxicol Lett 147:63–72. https://doi.org/10.1016/j.toxlet.2003.10.023
Article CAS PubMed Google Scholar
Jin N, Zhu H, Liang X, Huang W, Xie Q, Xiao P, Ni J, Liu Q (2017) Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer’s disease. Exp Neurol 297:36–49. https://doi.org/10.1016/j.expneurol.2017.07.006
Comments (0)