Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
Article CAS PubMed Google Scholar
Aoyama K (2021) Glutathione in the Brain. IJMS 22:5010. https://doi.org/10.3390/ijms22095010
Article CAS PubMed PubMed Central Google Scholar
Barth M, Ottolenghi C, Hubert L et al (2010) Multiple sources of metabolic disturbance in ETHE1-related ethylmalonic encephalopathy. J Inherit Metab Dis 33(Suppl 3):S443–453. https://doi.org/10.1007/s10545-010-9227-y
Bayram E, Topcu Y, Karakaya P et al (2013) Molybdenum cofactor deficiency: review of 12 cases (MoCD and review). Eur J Paediatr Neurol 17:1–6. https://doi.org/10.1016/j.ejpn.2012.10.003
Bhat MD, Prasad C, Tiwari S et al (2016) Diffusion restriction in ethylmalonic encephalopathy– An imaging evidence of the pathophysiology of the disease. Brain Develop 38:768–771. https://doi.org/10.1016/j.braindev.2016.02.014
Bijarnia RK, Bachtler M, Chandak PG et al (2015) Sodium thiosulfate ameliorates oxidative stress and preserves renal function in hyperoxaluric rats. PLoS ONE 10:e0124881. https://doi.org/10.1371/journal.pone.0124881
Article CAS PubMed PubMed Central Google Scholar
Brannan TS, Maker HS, Weiss C, Cohen G (1980) Regional Distribution of Glutathione Peroxidase in the Adult Rat Brain. J Neurochem 35:1013–1014. https://doi.org/10.1111/j.1471-4159.1980.tb07102.x
Article CAS PubMed Google Scholar
Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347
Article CAS PubMed Google Scholar
Cardoso GMF, Pletsch JT, Parmeggiani B et al (2017) Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochim Biophys Acta Mol Basis Dis 1863:2192–2201. https://doi.org/10.1016/j.bbadis.2017.06.007
Article CAS PubMed Google Scholar
Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. https://doi.org/10.1016/s0076-6879(85)13062-4
Article CAS PubMed Google Scholar
Carmi-Nawi N, Malinger G, Mandel H et al (2011) Prenatal Brain Disruption in Molybdenum Cofactor Deficiency. J Child Neurol 26:460–464. https://doi.org/10.1177/0883073810383017
Chen L-W, Tsai Y-S, Huang C-C (2014) Prenatal multicystic encephalopathy in isolated sulfite oxidase deficiency with a novel mutaion. Pediatr Neurol 51:181–182. https://doi.org/10.1016/j.pediatrneurol.2014.03.010
Claerhout H, Witters P, Régal L et al (2018) Isolated sulfite oxidase deficiency. J Inher Metab Disea 41:101–108. https://doi.org/10.1007/s10545-017-0089-4
de Moura Alvorcem L, da Rosa MS, Glänzel NM et al (2017) Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats. Neurotox Res 32:264–275. https://doi.org/10.1007/s12640-017-9732-y
Article CAS PubMed Google Scholar
de Moura Alvorcem L, Britto R, Parmeggiani B et al (2019) Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum. Mitochondrion 47:141–150. https://doi.org/10.1016/j.mito.2018.11.001
Article CAS PubMed Google Scholar
Di Meo I, Lamperti C, Tiranti V (2017) Ethylmalonic Encephalopathy. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)
Dröse S, Brandt U, Wittig I (2014) Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta 1844:1344–1354. https://doi.org/10.1016/j.bbapap.2014.02.006
Article CAS PubMed Google Scholar
Drousiotou A, DiMeo I, Mineri R et al (2011) Ethylmalonic encephalopathy: application of improved biochemical and molecular diagnostic approaches. Clin Genet 79:385–390. https://doi.org/10.1111/j.1399-0004.2010.01457.x
Article CAS PubMed Google Scholar
Duinkerken CW, de Weger VA, Dreschler WA et al (2021) Transtympanic Sodium Thiosulfate for Prevention of Cisplatin-Induced Ototoxicity: A Randomized Clinical Trial. Otol Neurotol 42:678–685. https://doi.org/10.1097/MAO.0000000000003069
Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4
Article CAS PubMed Google Scholar
Frusciante MR, Signori MF, Parmeggiani B et al (2023) Disruption of Bioenergetics in the Intestine of Wistar Rats Caused by Hydrogen Sulfide and Thiosulfate: A Potential Mechanism of Chronic Hemorrhagic Diarrhea in Ethylmalonic Encephalopathy. Cell Biochem Biophys 81:683–695. https://doi.org/10.1007/s12013-023-01161-0
Article CAS PubMed Google Scholar
Gottschalk A, Scafidi S, Toung TJK (2021) Brain water as a function of age and weight in normal rats. PLoS ONE 16:e0249384. https://doi.org/10.1371/journal.pone.0249384
Article CAS PubMed PubMed Central Google Scholar
Grings M, Moura AP, Parmeggiani B et al (2013) Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 531:191–198. https://doi.org/10.1016/j.gene.2013.09.018
Article CAS PubMed Google Scholar
Grings M, Moura AP, Parmeggiani B et al (2017) Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: Implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochimica et Biophysica Acta (BBA). Mol Basis Dis 1863:2135–2148. https://doi.org/10.1016/j.bbadis.2017.05.019
Grings M, Parmeggiani B, Moura AP et al (2018) Evidence that Thiosulfate Inhibits Creatine Kinase Activity in Rat Striatum via Thiol Group Oxidation. Neurotox Res 34:693–705. https://doi.org/10.1007/s12640-018-9934-y
Article CAS PubMed Google Scholar
Grings M, Seminotti B, Karunanidhi A et al (2019) ETHE1 and MOCS1 deficiencies: Disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts. Sci Rep 9:12651. https://doi.org/10.1038/s41598-019-49014-2
Article CAS PubMed PubMed Central Google Scholar
Grings M, Wajner M, Leipnitz G (2022) Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cell Mol Neurobiol 42:565–575. https://doi.org/10.1007/s10571-020-00976-2
Article CAS PubMed Google Scholar
Haces ML, Montiel T, Massieu L (2010) Selective vulnerability of brain regions to oxidative stress in a non-coma model of insulin-induced hypoglycemia. Neuroscience 165:28–38. https://doi.org/10.1016/j.neuroscience.2009.10.003
Article CAS PubMed Google Scholar
Halliwell B, Gutteridge JMC (2015) Free Radicals in Biology and Medicine. [s.l.] Clarendon Press
Hassoun EA, Vodhanel J, Holden B, Abushaban A (2006) The effects of ellagic acid and vitamin E succinate on antioxidant enzymes activities and glutathione levels in different brain regions of rats after subchronic exposure to TCDD. J Toxicol Environ Health A 69:381–393. https://doi.org/10.1080/15287390500246431
Comments (0)