High expression of RHOF is an effective diagnostic marker and a potential prognostic indicator for primary mediastinal large B-cell lymphoma

Savage KJ (2022) Primary mediastinal large B-cell lymphoma. Blood 140(9):955–970. https://doi.org/10.1182/blood.2020008376

Article  CAS  PubMed  Google Scholar 

Ondrejka SL, Ott G (2021) How I diagnose primary mediastinal (thymic) large B-cell lymphoma. Am J Clin Pathol 156(4):497–512. https://doi.org/10.1093/ajcp/aqab122

Article  PubMed  Google Scholar 

Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E et al (2022) The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 36(7):1720–1748

Article  PubMed  PubMed Central  Google Scholar 

Zhou H, Liu Q, Lu S, Zou L (2023) Primary mediastinal/thymic diffuse large B-cell lymphoma: a population-based study on incidence and survival. Ann Hematol 102(7):1879–1886. https://doi.org/10.1007/s00277-023-05225-2

Article  CAS  PubMed  Google Scholar 

Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112. https://doi.org/10.1016/j.ceb.2015.08.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardama GA, Gonzalez N, Maggio J, Menna PL, Gomez DE (2017) Rho GTPases as therapeutic targets in cancer (review). Int J Oncol 51(4):1025–1034. https://doi.org/10.3892/ijo.2017.4093

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haga RB, Ridley AJ (2016) Rho GTPases: regulation and roles in cancer cell biology. Small GTPases 7(4):207–221. https://doi.org/10.1080/21541248.2016.1232583

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou Y, Zi J, Ge Z (2021) High expression of rhof predicts worse overall survival: a potential therapeutic target for non-M3 acute myeloid leukemia. J Cancer 12(18):5530–5542. https://doi.org/10.7150/jca.52648

Article  PubMed  PubMed Central  Google Scholar 

Sugawara R, Ueda H, Honda R (2019) Structural and functional characterization of fast-cycling RhoF GTPase. Biochem Biophys Res Commun 513(2):522–527. https://doi.org/10.1016/j.bbrc.2019.04.018

Article  CAS  PubMed  Google Scholar 

Guo F, Velu CS, Grimes HL, Zheng Y (2009) Rho GTPase Cdc42 is essential for B-lymphocyte development and activation. Blood 114(14):2909–2916. https://doi.org/10.1182/blood-2009-04-214676

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walmsley MJ, Ooi SK, Reynolds LF, Smith SH, Ruf S, Mathiot A, Vanes L, Williams DA, Cancro MP, Tybulewicz VL (2003) Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302(5644):459–462. https://doi.org/10.1126/science.1089709

Article  CAS  PubMed  Google Scholar 

Zhang S, Zhou X, Lang RA, Guo F (2012) RhoA of the Rho family small GTPases is essential for B lymphocyte development. PLoS ONE 7(3):e33773. https://doi.org/10.1371/journal.pone.0033773

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kishimoto M, Matsuda T, Yanase S, Katsumi A, Suzuki N, Ikejiri M, Takagi A, Ikawa M, Kojima T, Kunishima S, Kiyoi H, Naoe T, Matsushita T, Maruyama M (2014) Rhof promotes murine marginal zone B cell development. Nagoya J Med Sci 76(3–4):293–305

PubMed  PubMed Central  Google Scholar 

Gouw LG, Reading NS, Jenson SD, Lim MS, Elenitoba-Johnson KS (2005) Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant lymphomas. Br J Haematol 129(4):531–533. https://doi.org/10.1111/j.1365-2141.2005.05481.x

Article  CAS  PubMed  Google Scholar 

WHO Classification of Tumours Editorial Board (2024) Haematolymphoid tumours. WHO classification of tumours series, vol 11, 5th edn. Lyon (France): International Agency for Research on Cancer. Available from: https://tumourclassification.iarc.who.int

Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, et al. (2022) The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood, 140(11):1229-1253. https://doi.org/10.1182/blood.2022015851. Erratum in: Blood. 2023;141(4):437. https://doi.org/10.1182/blood.2022019016

Duns G, Viganò E, Ennishi D, Sarkozy C, Hung SS, Chavez E et al (2021) Characterization of DLBCL with a PMBL gene expression signature. Blood 138(2):136–148. https://doi.org/10.1182/blood.2020007683

Article  CAS  PubMed  Google Scholar 

Lymphoid Disease Group, Chinese Society of Hematology, Chinese Medical Association; Lymphoma Expert Committee of Chinese Society of Clinical Oncology (CSCO) (2024) Chinese expert consensus on the diagnosis and management of primary mediastinal large B-cell lymphoma. Zhonghua Xue Ye Xue Za Zhi 45(3):209–214. https://doi.org/10.3760/cma.j.cn121090-20231107-00252

Article  Google Scholar 

Fakhri B, Ai W (2021) Current and emerging treatment options in primary mediastinal B-cell lymphoma. Ther Adv Hematol 8(12):20406207211048960. https://doi.org/10.1177/20406207211048959

Article  CAS  Google Scholar 

Dunleavy K, Pittaluga S, Maeda LS, Advani R, Chen CC, Hessler J et al (2013) Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med 368(15):1408–1416. https://doi.org/10.1056/NEJMoa1214561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cook MR, Williams LS, Dorris CS, Luo Y, Makambi K, Dunleavy K (2024) Improved survival for dose-intensive chemotherapy in primary mediastinal B-cell lymphoma: a systematic review and meta-analysis of 4,068 patients. Haematologica 109(3):846–856. https://doi.org/10.3324/haematol.2023.283446

Article  CAS  PubMed  Google Scholar 

Shah NN, Szabo A, Huntington SF, Epperla N, Reddy N, Ganguly S et al (2018) R-CHOP versus dose-adjusted R-EPOCH in frontline management of primary mediastinal B-cell lymphoma: a multi-centre analysis. Br J Haematol 180(4):534–544. https://doi.org/10.1111/bjh.15051

Article  CAS  PubMed  Google Scholar 

Zinzani PL, Santoro A, Gritti G, Brice P, Barr PM, Kuruvilla J et al (2019) Nivolumab combined with brentuximab vedotin for relapsed/refractory primary mediastinal large B-cell lymphoma: efficacy and safety from the phase II CheckMate 436 Study. J Clin Oncol 37(33):3081–3089. https://doi.org/10.1200/JCO.19.01492

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed Z, Afridi SS, Shahid Z, Zamani Z, Rehman S, Aiman W et al (2021) Primary mediastinal B-cell lymphoma: a 2021 update on genetics, diagnosis, and novel therapeutics. Clin Lymphoma Myeloma Leuk 21(11):e865–e875. https://doi.org/10.1016/j.clml.2021.06.012

Article  CAS  PubMed  Google Scholar 

Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471(7338):377–381. https://doi.org/10.1038/nature09754

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mottok A, Wright G, Rosenwald A, Ott G, Ramsower C, Campo E et al (2018) Molecular classification of primary mediastinal large B-cell lymphoma using routinely available tissue specimens. Blood 132(22):2401–2405. https://doi.org/10.1182/blood-2018-05-851154

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bobée V, Ruminy P, Marchand V, Viailly PJ, Abdel Sater A, Veresezan L et al (2017) Determination of molecular subtypes of diffuse large b-cell lymphoma using a reverse transcriptase multiplex ligation-dependent probe amplification classifier: a CALYM study. J Mol Diagn 19(6):892–904. https://doi.org/10.1016/j.jmoldx.2017.07.007

Article  CAS  PubMed  Google Scholar 

Twa DD, Chan FC, Ben-Neriah S, Woolcock BW, Mottok A, Tan KL et al (2014) Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123(13):2062–2065. https://doi.org/10.1182/blood-2013-10-535443

Article  CAS  PubMed  Google Scholar 

Chapuy B, Stewart C, Dunford AJ, Kim J, Wienand K, Kamburov A et al (2019) Genomic analyses of PMBL reveal new drivers and mechanisms of sensitivity to PD-1 blockade. Blood 134(26):2369–2382. https://doi.org/10.1182/blood.2019002067

Comments (0)

No login
gif