Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics. 43, 99–111 (2015) https://doi.org/10.1016/j.compmedimag.2015.02.007
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging. 35(2), 630–644 (2016) https://doi.org/10.1109/TMI.2015.2487997
Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., Lange, T., Johansen, D., Johansen, H.D.: Kvasir-SEG: A Segmented Polyp Dataset (2019)
Silva, J., Histace, A., Romain, O., Dray, X., Bertrand, Granado: Towards embedded detection of polyps in wce images for early diagnosis of colorectal cancer. (2016)
Vázquez, D., Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., López, A.M., Romero, A., Drozdzal, M., Courville, A.: A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images (2016)
Fan, D.-P., Ji, G.-P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Parallel reverse attention network for polyp segmentation. ArXiv. abs/2006.11392 (2020)
Lou, A., Guan, S., Loew, M.H.: Caranet: context axial reverse attention network for segmentation of small medical objects. In: Medical Imaging (2021)
Duc, N.T., Oanh, N.T., Thuy, N.T., Triet, T.M., Sang, D.V.: ColonFormer: An Efficient Transformer based Method for Colon Polyp Segmentation (2022)
Dumitru, R.-G., Peteleaza, D., Craciun, C.: Using duck-net for polyp image segmentation. Scientific Reports. 13(1) (2023) https://doi.org/10.1038/s41598-023-36940-5
Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for polyp segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23, pp. 253–262 (2020). Springer
Zhu, J., Ge, M., Chang, Z., Dong, W.: Crcnet: Global-local context and multi-modality cross attention for polyp segmentation. Biomedical Signal Processing and Control. 83, 104593 (2023) https://doi.org/10.1016/j.bspc.2023.104593
Nguyen, D.C., Nguyen, H.L.: Polypooling: An accurate polyp segmentation from colonoscopy images. Biomedical Signal Processing and Control. 92, 105979 (2024) https://doi.org/10.1016/j.bspc.2024.105979
Guo, M.-H., Lu, C.-Z., Hou, Q., Liu, Z., Cheng, M.-M., Hu, S.-M.: Segnext: Rethinking convolutional attention design for semantic segmentation. Advances in Neural Information Processing Systems. 35, 1140–1156 (2022)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: Convolutional Block Attention Module (2018)
Hao, K., Lin, S., Qiao, J., Tu, Y.: A generalized pooling for brain tumor segmentation. IEEE Access. 9, 159283–159290 (2021) https://doi.org/10.1109/ACCESS.2021.3130035
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. CoRR. abs/1807.10165 (2018) arXiv:1807.10165
Jha, D., Smedsrud, P.H., Riegler, M.A., Johansen, D., De Lange, T., Halvorsen, P., Johansen, H.D.: Resunet++: An advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255 (2019). IEEE
Huang, D., Han, K., Xi, Y., Che, W.: Multi-scale fusion attention network for polyp segmentation. In: ICONIP 2021, pp. 160–167 (2021). Springer
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. (2020)
Dong, B., Wang, W., Fan, D.-P., Li, J., Fu, H., Shao, L.: Polyp-pvt: Polyp segmentation with pyramid vision transformers. arXiv preprint arXiv:2108.06932. (2021)
Jha, D., Tomar, N.K., Sharma, V., Bagci, U.: Transnetr: Transformer-based residual network for polyp segmentation with multi-center out-of-distribution testing. arXiv preprint arXiv:2303.07428. (2023)
Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., Song, S.: Stepwise feature fusion: Local guides global. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 110–120 (2022). Springer
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: Simple and efficient design for semantic segmentation with transformers. Advances in neural information processing systems. 34, 12077–12090 (2021)
Lou, A., Loew, M.: Cfpnet: Channel-wise feature pyramid for real-time semantic segmentation. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1894–1898 (2021). IEEE
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009). https://doi.org/10.1109/CVPR.2009.5206596
Fan, D.-P., Cheng, M.-M., Liu, Y., Li, T., Borji, A.: Structure-measure: A new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)
Fan, D.-P., Gong, C., Cao, Y., Ren, B., Cheng, M.-M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421. (2018)
Woolson, R.F.: Wilcoxon signed-rank test. Encyclopedia of Biostatistics. 8 (2005)
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K.P., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40, 834–848 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241 (2015). Springer
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE transactions on medical imaging. 39(6), 1856–1867 (2019)
Article PubMed PubMed Central Google Scholar
Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, pp. 120–130 (2021). Springer
Zhou, T., Zhou, Y., He, K., Gong, C., Yang, J., Fu, H., Shen, D.: Cross-level feature aggregation network for polyp segmentation. Pattern Recognition. 140, 109555 (2023) https://doi.org/10.1016/j.patcog.2023.109555
Jha, D., Smedsrud, P.H., Riegler, M.A., Johansen, D., Lange, T., Halvorsen, P., Johansen, H.D.: ResUNet++: An Advanced Architecture for Medical Image Segmentation (2019)
Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation (2020)
Jha, D., Ali, S., Tomar, N.K., Johansen, H.D., Johansen, D., Rittscher, J., Riegler, M.A., Halvorsen, P.: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning. IEEE Access. 9, 40496–40510 (2021) https://doi.org/10.1109/access.2021.3063716
Huang, C.-H., Wu, H.-Y., Lin, Y.-L.S.: Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. ArXiv. abs/2101.07172 (2021)
Tomar, N.K., Jha, D., Ali, S., Johansen, H.D., Johansen, D., Riegler, M.A., Halvorsen, P.: DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation (2020)
Comments (0)