Choroidal thickness in macular, nasal midperiphery, and temporal midperiphery regions and its relationship with axial length and refractive error

Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.

Article  PubMed  Google Scholar 

Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31:622–60.

Article  PubMed  CAS  Google Scholar 

Mutti DO, Sinnott LT, Mitchell GL, Jordan LA, Friedman NE, Frane SL, et al. Ocular component development during infancy and early childhood. Optom Vis Sci. 2018;95:976–85.

Article  PubMed  PubMed Central  Google Scholar 

Verkicharla PK, Mathur A, Mallen EA, Pope JM, Atchison DA. Eye shape and retinal shape, and their relation to peripheral refraction. Ophthalmic Physiol Opt. 2012;32:184–99.

Article  PubMed  Google Scholar 

Gentle A, Liu Y, Martin JE, Conti GL, McBrien NA. Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia. J Biol Chem. 2003;278:16587–94.

Article  PubMed  CAS  Google Scholar 

Tanihara H, Okinami S, Minami H, Ohnichi-Nio T, Tachi-Ogawa N, Ogino N. Clinical features of retinal detachment in the elderly. Ophthalmologica. 1995;209:203–7.

Article  PubMed  CAS  Google Scholar 

Prousali E, Dastiridou A, Ziakas N, Androudi S, Mataftsi A. Choroidal thickness and ocular growth in childhood. Surv Ophthalmol. 2021;66:261–75.

Article  PubMed  Google Scholar 

Kim MS, Lim HB, Lee WH, Kim KM, Nam KY, Kim JY. Wide-field swept-source optical coherence tomography analysis of interocular symmetry of choroidal thickness in healthy young individuals. Investig Ophthalmol Vis Sci. 2021;62:5.

Article  Google Scholar 

Harb E, Hyman L, Gwiazda J, Marsh-Tootle W, Zhang Q, Hou W, et al. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort. Am J Ophthalmol. 2015;160:62-71.e2.

Article  PubMed  PubMed Central  Google Scholar 

Read SA, Fuss JA, Vincent SJ, Collins MJ, Alonso-Caneiro D. Choroidal changes in human myopia: insights from optical coherence tomography imaging. Clin Exp Optom. 2019;102:270–85.

Article  PubMed  Google Scholar 

Hoseini-Yazdi H, Vincent SJ, Collins MJ, Read SA, Alonso-Caneiro D. Wide-field choroidal thickness in myopes and emmetropes. Sci Rep. 2019;9:3474.

Article  PubMed  PubMed Central  Google Scholar 

Breher K, Ohlendorf A, Wahl S. Myopia induces meridional growth asymmetry of the retina: a pilot study using wide-field swept-source OCT. Sci Rep. 2020;10:1–8.

Article  Google Scholar 

Chakraborty R, Baranton K, Spiegel D, Lacan P, Guillon M, Barrau C, et al. Effects of mild- and moderate-intensity illumination on short-term axial length and choroidal thickness changes in young adults. Ophthalmic Physiol Opt. 2022;42:762–72.

Article  PubMed  Google Scholar 

Ye L, Shi Y, Yin Y, Li S, He J, Zhu J, et al. Effects of atropine treatment on choroidal thickness in myopic children. Investig Ophthalmol Vis Sci. 2020;61:15.

Google Scholar 

Yam JC, Jiang Y, Lee J, Li S, Zhang Y, Sun W, et al. The association of choroidal thickening by atropine with treatment effects for myopia: two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study. Am J Ophthalmol. 2022;237:130–8.

Article  PubMed  CAS  Google Scholar 

Hao Q, Zhao Q. Changes in subfoveal choroidal thickness in myopic children with 0.01% atropine, orthokeratology, or their combination. Int Ophthalmol. 2021;41:2963–71.

Lee JH, Hong IH, Lee TY, Han JR, Jeon GS. Choroidal thickness changes after orthokeratology lens wearing in young adults with myopia. Ophthalmic Res. 2021;64:121–7.

Article  PubMed  Google Scholar 

Chen X, Xiong Y, Liu F, Wang J, Yang B, Liu L. Factors determining the myopia control effect of an orthokeratology lens: a two-year multi-level model. Ophthalmic Physiol Opt. 2022;42:786–96.

Article  PubMed  Google Scholar 

Breher K, García MG, Ohlendorf A, Wahl S. The effect of the optical design of multifocal contact lenses on choroidal thickness. PLoS ONE. 2018;13: e0207637.

Article  PubMed  PubMed Central  Google Scholar 

Drexler W, Findl O, Schmetterer L, Hitzenberger CK, Fercher AF. Eye elongation during accommodation in humans: differences between emmetropes and myopes. Investig Ophthalmol Vis Sci. 1998;39:2140–7.

CAS  Google Scholar 

Shum PJT, Ko LS, Ng CL, Lin SL. A biometric study of ocular changes during accommodation. Am J Ophthalmol. 1993;115:76–81.

Article  PubMed  CAS  Google Scholar 

Norton TT. Animal models of myopia: learning how vision controls the size of the eye. ILAR J. 1999;40:59–77.

Article  PubMed  Google Scholar 

Wildsoet CF. Active emmetropization–evidence for its existence and ramifications for clinical practice. Ophthalmic Physiol Opt. 1997;17:279–90.

Article  PubMed  CAS  Google Scholar 

Summers JA. The choroid as a sclera growth regulator. Exp Eye Res. 2013;114:120–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate. Investig Ophthalmol Vis Sci. 2000;41:1249–58.

CAS  Google Scholar 

Izumi T, Maruko I, Kawano T, Sakaihara M, Iida T. Morphological differences of choroid in central serous chorioretinopathy determined by ultra-widefield optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2022;260:295–301.

Article  PubMed  Google Scholar 

Tanabe H, Ito Y, Terasaki H. Choroid is thinner in inferior region of optic disks of normal eyes. Retina. 2012;32:134–9.

Article  PubMed  Google Scholar 

Shin JW, Shin YU, Lee BR. Choroidal thickness and volume mapping by a six radial scan protocol on spectral-domain optical coherence tomography. Ophthalmology. 2012;119:1017–23.

Article  PubMed  Google Scholar 

Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Investig Ophthalmol Vis Sci. 2011;52:4971–8.

Article  Google Scholar 

Ouyang Y, Heussen FM, Mokwa N, Walsh AC, Durbin MK, Keane PA, et al. Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci. 2011;52:7019–26.

Article  Google Scholar 

Agawa T, Miura M, Ikuno Y, Makita S, Fabritius T, Iwasaki T, et al. Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1485–92.

Article  PubMed  Google Scholar 

Tan CS, Cheong KX, Lim LW, Li KZ. Topographic variation of choroidal and retinal thicknesses at the macula in healthy adults. Br J Ophthalmol. 2014;98:339–44.

Article  PubMed  Google Scholar 

Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Investig Ophthalmol Vis Sci. 2011;52:8438–41.

Article  Google Scholar 

Esmaeelpour M, Povazay B, Hermann B, Hofer B, Kajic V, Kapoor K, et al. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Investig Ophthalmol Vis Sci. 2010;51:5260–6.

Article  Google Scholar 

Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, et al. Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology. 2013;120:175–80.

Article  PubMed  Google Scholar 

Tan CS, Cheong KX. Macular choroidal thicknesses in healthy adults–relationship with ocular and demographic factors. Investig Ophthalmol Vis Sci. 2014;55:6452–8.

Article  Google Scholar 

Chen FK, Yeoh J, Rahman W, Patel PJ, Tufail A, Da Cruz L. Topographic variation and interocular symmetry of macular choroidal thickness using enhanced depth imaging optical coherence tomography. Investig Ophthalmol Vis Sci. 2012;53:975–85.

Article 

Comments (0)

No login
gif