Agarwal M, Khan S (2020) Plasma lipids as biomarkers for Alzheimer’s disease: a systematic review. Cureus 12:12008
Bailey CC, DeVaux LB, Farzan M (2015) The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J Biol Chem 290:26033–26042
CAS PubMed PubMed Central Google Scholar
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL (2021) Cholesterol in membranes facilitates aggregation of amyloid β protein at physiologically relevant concentrations. ACS Chem Neurosci 12:506–516
Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171
CAS PubMed PubMed Central Google Scholar
Bassett CN, Montine TJ (2003) Lipoproteins and lipid peroxidation in Alzheimer’s disease. J Nutr Health Aging 7:24–29
Bedse G, Romano A, Lavecchia AM, Cassano T, Gaetani S (2015) The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 43:1115–1136
Belayev L, Hong SH, Menghani H, Marcell SJ, Obenaus A, Freitas RS, Khoutorova L, Balaszczuk V, Jun B, Oriá RB, Bazan NG (2018) Docosanoids promote neurogenesis and angiogenesis, blood-brain barrier integrity, penumbra protection, and neurobehavioral recovery after experimental ischemic stroke. Mol Neurobiol 55:7090–7106
CAS PubMed PubMed Central Google Scholar
Bhattacharyya R, Barren C, Kovacs DM (2013) Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 33:11169–11183
CAS PubMed PubMed Central Google Scholar
Biringer RG (2019) The Role of Eicosanoids in Alzheimer’s disease. Int J Environ Res Public Health 16:2560
CAS PubMed PubMed Central Google Scholar
Björkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24:806–815
Bode DC, Baker MD, Viles JH (2017) Ion channel formation by amyloid-β42 oligomers but not amyloid-β40 in cellular membranes. J Biol Chem 292:1404–1413
Bokvist M, Lindström F, Watts A, Gröbner G (2004) Two types of Alzheimer’s beta-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049
Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P (2011) Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1–42) aggregation and toxicity. Int J Biochem Cell Biol 43:877–885
Bucciantini M, Rigacci S, Stefani M (2014) Amyloid aggregation: role of biological membranes and the aggregate-membrane system. J Phys Chem Lett 5:517–527
Cai M, Zhang X, He W, Zhang J (2020) The involvement of metals in Alzheimer’s disease through epigenetic mechanisms. Front Genet 11:614666
CAS PubMed PubMed Central Google Scholar
Carrotta R, Mangione MR, Librizzi F, Moran O (2021) Small angle X-ray scattering sensing membrane composition: the role of sphingolipids in membrane-amyloid β-peptide interaction. Biology (basel) 11:26
Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3:8957–8957
Catalá A, Díaz M (2016) Editorial: impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front Physiol 7:423
PubMed PubMed Central Google Scholar
Chang JY, Chavis JA, Liu LZ, Drew PD (1998) Cholesterol oxides induce programmed cell death in microglial cells. Biochem Biophys Res Commun 249:817–821
Chang TY, Yamauchi Y, Hasan MT, Chang C (2017) Cellular cholesterol homeostasis and Alzheimer’s disease. J Lipid Res 58:2239–2254
CAS PubMed PubMed Central Google Scholar
Chappus-McCendie H, Chevalier L, Roberge C, Plourde M (2019) Omega-3 PUFA metabolism and brain modifications during aging. Prog Neuropsychopharmacol Biol Psychiatry 94:109662
Chaurio RA, Janko C, Muñoz LE, Frey B, Herrmann M, Gaipl US (2009) Phospholipids: key players in apoptosis and immune regulation. Molecules 14:4892–4914
CAS PubMed PubMed Central Google Scholar
Chen J, Wei Y, Chen X, Jiao J, Zhang Y (2017) Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget 8:7301–7314
Chen L-L, Fan Y-G, Zhao L-X, Zhang Q, Wang Z-Y (2023) The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 131:106301
Chew H, Solomon VA, Fonteh AN (2020) Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front Physiol 11:598
PubMed PubMed Central Google Scholar
Cho WJ, Jena BP, Jeremic AM (2008) Chapter 13 nano-scale imaging and dynamics of amylin-membrane interactions and its implication in type II diabetes mellitus. Methods Cell Biol 90:267–286
Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17:201–207
Cossec JC, Marquer C, Panchal M, Lazar AN, Duyckaerts C, Potier MC (2010) Cholesterol changes in Alzheimer’s disease: methods of analysis and impact on the formation of enlarged endosomes. Biochim Biophys Acta 1801:839–845
Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA, Morris MC (2012) Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 29:691–697
CAS PubMed PubMed Central Google Scholar
Daiello LA, Gongvatana A, Dunsiger S, Cohen RA, Ott BR (2015) Association of fish oil supplement use with preservation of brain volume and cognitive function. Alzheimers Dement 11:226–235
Dante S, Hauss T, Dencher NA (2006) Cholesterol inhibits the insertion of the Alzheimer’s peptide Abeta(25–35) in lipid bilayers. Eur Biophys J 35:523–531
Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 12:284–296
PubMed PubMed Central Google Scholar
Di Scala C, Chahinian H, Yahi N, Garmy N, Fantini J (2014a) Interaction of Alzheimer’s β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation. Biochemistry 53:4489–4502
Di Scala C, Troadec JD, Lelièvre C, Garmy N, Fantini J, Chahinian H (2014b) Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide. J Neurochem 128:186–195
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G (2021) Amyloid prefibrillar oligomers: the surprising commonalities in their structure and activity. Int J Mol Sci 22:6435
CAS PubMed PubMed Central Google Scholar
Doroszkiewicz J, Farhan JA, Mroczko J, Winkel I, Perkowski M, Mroczko B (2023) Common and trace metals in Alzheimer’s and Parkinson’s diseases. Int J Mol Sci 24:15721
CAS PubMed PubMed Central Google Scholar
Dou T, Zhou L, Kurouski D (2021) Unravelling the structural organization of individual α-synuclein oligomers grown in the presence of phospholipids. J Phys Chem Lett 12:4407–4414
Egawa J, Pearn ML, Lemkuil BP, Patel PM, Head BP (2016) Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function. J Physiol 594:4565–4579
Comments (0)