High expression of BCAT1 sensitizes AML cells to PARP inhibitor by suppressing DNA damage response

Cerrano M, Itzykson R (2019) New treatment options for acute myeloid leukemia in 2019. Curr Oncol Rep 21(2):16

Article  PubMed  Google Scholar 

Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474

Article  PubMed  Google Scholar 

Wang Y, Zhang L, Chen WL, Wang JH, Li N, Li JM et al (2013) Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis. J Proteome Res 12(10):4393–4401

Article  CAS  PubMed  Google Scholar 

Castro I, Sampaio-Marques B, Ludovico P (2019) Targeting metabolic reprogramming in acute myeloid leukemia. Cells 8(9)

Tönjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM et al (2013) BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19(7):901–908

Article  PubMed  PubMed Central  Google Scholar 

Zhang L, Han J (2017) Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun 486(2):224–231

Article  CAS  PubMed  Google Scholar 

Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC et al (2015) BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget 6(31):31522–31543

Article  PubMed  PubMed Central  Google Scholar 

Zheng YH, Hu WJ, Chen BC, Grahn TH, Zhao YR, Bao HL et al (2016) BCAT1, a key prognostic predictor of hepatocellular carcinoma, promotes cell proliferation and induces chemoresistance to cisplatin. Liver international : official journal of the International Association for the Study of the Liver 36(12):1836–1847

Article  CAS  PubMed  Google Scholar 

Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J et al (2017) Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 545(7655):500–504

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C et al (2017) BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 551(7680):384–388

Article  ADS  CAS  PubMed  Google Scholar 

Ananieva EA, Wilkinson AC (2018) Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care 21(1):64–70

Article  CAS  PubMed  Google Scholar 

Ichihara A, Koyama E (1966) Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem 59(2):160–9

Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR et al (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science (New York, NY) 353(6304):1161–1165

Article  ADS  CAS  Google Scholar 

Mayers JR, Vander Heiden MG (2017) Nature and nurture: what determines tumor metabolic phenotypes? Can Res 77(12):3131–3134

Article  CAS  Google Scholar 

D’Oto A, Tian QW, Davidoff AM, Yang J (2016) Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther 1(2):34–40

PubMed  PubMed Central  Google Scholar 

Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JSO (2021) Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2(12)

Nakagawa M, Nakatani F, Matsunaga H, Seki T, Endo M, Ogawara Y et al (2019) Selective inhibition of mutant IDH1 by DS-1001b ameliorates aberrant histone modifications and impairs tumor activity in chondrosarcoma. Oncogene 38(42):6835–6849

Article  CAS  PubMed  Google Scholar 

Inoue S, Li WY, Tseng A, Beerman I, Elia AJ, Bendall SC et al (2016) Mutant IDH1 downregulates ATM and alters DNA repair and sensitivity to DNA damage independent of TET2. Cancer Cell 30(2):337–348

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padmakumar D, Chandraprabha VR, Gopinath P, Vimala Devi ART, Anitha GRJ, Sreelatha MM et al (2021) A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res 111:106727

Article  CAS  PubMed  Google Scholar 

Jaroslav P, Martina H, Jirí S, Hana K, Petr S, Tomás K et al (2005) Expression of cyclins D1, D2, and D3 and Ki-67 in Leukemia. Leuk Lymphoma 46(11):1605–1612

Article  CAS  PubMed  Google Scholar 

Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14(2):130–146

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abla H, Sollazzo M, Gasparre G, Iommarini L, Porcelli AM (2020) The multifaceted contribution of α-ketoglutarate to tumor progression: an opportunity to exploit? Semin Cell Dev Biol 98:26–33

Article  CAS  PubMed  Google Scholar 

Kaławaj K, Sławińska-Brych A, Mizerska-Kowalska M, Żurek A, Bojarska-Junak A, Kandefer-Szerszeń M et al (2020)Alpha ketoglutarate exerts in vitro anti-osteosarcoma effects through inhibition of cell proliferation, induction of apoptosis via the JNK and caspase 9-dependent mechanism, and suppression of TGF-β and VEGF production and metastatic potential of cells. Int J Mol Sci 21(24)

Blanquart C, Linot C, Cartron PF, Tomaselli D, Mai A, Bertrand P (2019) Epigenetic metalloenzymes. Curr Med Chem 26(15):2748–2785

Article  CAS  PubMed  Google Scholar 

Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science (New York, NY) 355(6330):1152–1158

Article  ADS  CAS  Google Scholar 

Molenaar RJ, Radivoyevitch T, Nagata Y, Khurshed M, Przychodzen B, Makishima H et al (2018) IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors. Clin Cancer Res 24(7):1705–1715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H et al (2017) 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Science translational medicine 9(375)

Sarkar A, Gandhi V (2021) Activation of ATM kinase by ROS generated during ionophore-induced mitophagy in human T and B cell malignancies. Mol Cell Biochem 476(1):417–423

Article  CAS  PubMed  Google Scholar 

Pommier Y, O'Connor MJ, de Bono J (2016) Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8(362):362ps17

Zhao L, So CW (2016) PARP-inhibitor-induced synthetic lethality for acute myeloid leukemia treatment. Exp Hematol 44(10):902–907

Article  CAS  PubMed  Google Scholar 

King MC (2014) The race to clone BRCA1. Science (New York, NY) 343(6178):1462–1465

Article  ADS  CAS  Google Scholar 

Scardocci A, Guidi F, D’Alo F, Gumiero D, Fabiani E, Diruscio A et al (2006) Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br J Cancer 95(8):1108–1113

Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N et al (2015) Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med 21(12):1481–1490

Article  CAS  PubMed  Google Scholar 

Li X, Li C, Jin J, Wang J, Huang J, Ma Z et al (2018) High PARP-1 expression predicts poor survival in acute myeloid leukemia and PARP-1 inhibitor and SAHA-bendamustine hybrid inhibitor combination treatment synergistically enhances anti-tumor effects. EBioMedicine 38:47–56

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muvarak NE, Chowdhury K, Xia L, Robert C, Choi EY, Cai Y et al (2016) Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents - a potential therapy for cancer. Cancer Cell 30(4):637–650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajehا S. The role of tissue factor in signaling pathways of pathological conditions and angiogenesis. Curr Mol Med. 2023.

Mao L, Chen J, Lu X, Yang C, Ding Y, Wang M et al (2021) Proteomic analysis of lung cancer cells reveals a critical role of BCAT1 in cancer cell metastasis. Theranostics 11(19):9705–9720

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, et al. (2022) SOX2 function in cancers: association with growth, invasion, stemness and therapy response. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 156:113860.

Ding LN, Yu YY, Ma CJ, Lei CJ, Zhang HB (2023) SOX2-associated signaling pathways regulate biological phenotypes of cancers. Biomed Pharmacother 160:114336

Hillier J, Allcott GJ, Guest LA, Heaselgrave W, Tonks A, Conway ME et al (2022)The BCAT1 CXXC motif provides protection against ROS in acute myeloid leukaemia cells. Antioxidants (Basel, Switzerland) 11(4)

Chirasani SR, Markovic DS, Synowitz M, Eichler SA, Wisniewski P, Kaminska B et al (2009) Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells. J Mol Med (Berl) 87(2):153–167

Article  CAS  PubMed  Google Scholar 

Robert SM, Sontheimer H (2014) Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 71(10):1839–1854

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif